

Power Query
Cookbook

Use effective and powerful queries in Power BI
Desktop and Dataflows to prepare and transform
your data

Andrea Janicijevic

BIRMINGHAM—MUMBAI

Power Query Cookbook
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author(s), nor Packt Publishing or its dealers and
distributors, will be held liable for any damages caused or alleged to have been caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Group Product Manager: Kunal Parikh
Publishing Product Manager: Ali Abidi
Senior Editor: Roshan Kumar
Content Development Editor: Tazeen Shaikh
Technical Editor: Rahul Limbachiya
Copy Editor: Safis Editing
Project Coordinator: Aparna Ravikumar Nair
Proofreader: Safis Editing
Indexer: Subalakshmi Govindhan
Production Designer: Prashant Ghare

First published: October 2021

Production reference: 1070921

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80056-948-5

www.packt.com

http://www.packt.com

To my family, who have always supported me during my studies and my
professional experience and have been key in me becoming the woman
I am today. To my colleague, Patrik Borosch, who introduced me to this

opportunity, and to my manager, Zoran Draganic, who gave me the
freedom to pursue this exciting journey.

– Andrea Janicijevic

Contributors

About the author
Andrea Janicijevic is a cloud solution architect and works in the world of analytics and
business intelligence, constantly expanding her knowledge in the field of data. From the
outset, she has been working on analytics platforms, helping clients to better adopt cloud
technology across a wide range of industries and company sizes.

She studied economics and management of innovation and technology at Bocconi
University in Milan and during her studies, she started working at Microsoft in 2018.
She began working with the Microsoft analytics platform, including Power BI, becoming
a trusted technical advisor for business and technical users. She later started collaborating
with Packt, accepting the challenge of sharing her experience with Power Query.

About the reviewers
Patrik Borosch is a cloud solution architect for data and AI at Microsoft Switzerland
GmbH. He has more than 25 years of BI and analytics development, engineering, and
architecture experience and is a Microsoft Certified Data Engineer and a Microsoft
Certified AI Engineer. Patrik has worked on numerous significant international data
warehouse, data integration, and big data projects. Through this, he has built and
extended his experience in all facets, from requirements engineering to data modeling and
ETL, all the way to reporting and dashboarding. At Microsoft Switzerland, he supports
customers in their journey into the analytical world of the Azure Cloud.

Michiel Rozema is one of Europe's top Power BI experts, living in the Netherlands.
He holds a master's degree in mathematics and has worked in the IT industry for over
25 years as a consultant and manager. Michiel was the data insight lead at Microsoft
Netherlands for 8 years, during which time he launched Power BI in the country. He is the
author of two Dutch books on Power Pivot and Power BI, and is the author of the Extreme
DAX title with Packt Publishing. Michiel is one of the founders of the Dutch Power BI
user group and the initiator of the Power BI Summer School, and has been a speaker at
many conferences on Power BI. He has been awarded the Microsoft MVP award since
2019 and, together with fellow MVP Henk Vlootman, runs the consultancy firm Quanto,
specializing in Power BI.

Preface

1
Getting Started with Power Query

Technical requirements� 2
Installing a Power BI gateway� 3
Getting ready� 3
How to do it…� 4
How it works� 15

Authentication to data sources� 15
Getting ready� 16

How to do it…� 16
How it works� 25

Main challenges that Power
Query solves� 25
Getting ready� 25
How to do it…� 25

2
Connecting to Fetch Data

Technical requirements� 36
Getting data and connector
navigation � 36
Getting ready� 36
How to do it...� 36

Creating a query from files� 39
Getting ready� 40
How to do it...� 41
How it works...� 49

Creating a query from a folder� 49
Getting ready� 49

How to do it...� 50
How it works...� 55

Creating a query from a
database� 56
Getting ready� 56
How to do it...� 56
How it works...� 62

Creating a query from a website� 62
Getting ready� 63
How to do it...� 63
How it works...� 69

Table of Contents

viii Table of Contents

3
Data Exploration in Power Query

Technical requirements� 72
Exploring Power Query Editor � 72
Getting ready� 73
How to do it…� 73

Managing columns� 78
Getting ready� 78
How to do it…� 78

Using data profiling tools� 82
Getting ready� 82
How to do it…� 82

Using Queries pane shortcuts� 91
Getting ready� 91
How to do it…� 91

Using Query Settings pane
shortcuts � 93
Getting ready� 93
How to do it…� 93

Using Schema view and
Diagram view � 96
Getting ready� 96
How to do it…� 97

4
Reshaping Your Data

Technical requirements� 108
Formatting data types� 108
Getting ready� 108
How to do it� 109

Using first rows as headers� 118
Getting ready� 118
How to do it� 118

Grouping data� 120
Getting ready� 120
How to do it� 121

Unpivoting and pivoting
columns� 124
Getting ready� 124
How to do it� 124

Filling empty rows� 129

Getting ready� 129
How to do it� 130

Splitting columns� 132
Getting ready� 132
How to do it� 132

Extracting data� 136
Getting ready� 137
How to do it� 137

Parsing JSON or XML� 139
Getting ready� 139
How to do it� 140

Exploring artificial intelligence
insights� 143
Getting ready� 143
How to do it� 144

Table of Contents ix

5
Combining Queries for Efficiency

Technical requirements� 150
Merging queries� 150
Getting ready� 150
How to do it…� 151

Joining methods� 156
Getting ready� 156
How to do it…� 156

Appending queries� 165
Getting ready� 165

How to do it…� 165

Combining multiple files� 169
Getting ready� 170
How to do it…� 170

Using the Query Dependencies
view� 173
Getting ready� 173
How to do it…� 174

6
Optimizing Power Query Performance

Technical requirements� 182
Setting up parameters� 182
Getting ready� 182
How to do it…� 183

Filtering with parameters� 189
Getting ready� 189
How to do it…� 189

Folding queries� 203
Getting ready� 204

How to do it…� 204

Leveraging incremental refresh
and folding� 212
Getting ready� 213
How to do it…� 213

Disabling query load� 223
Getting ready� 223
How to do it…� 224

7
Leveraging the M Language

Technical requirements� 232
Using M syntax and the
Advanced Editor � 232
Getting ready� 232
How to do it…� 233

Using M and DAX – differences � 238
Getting ready� 238
How to do it…� 238

Using M on existing queries� 243

x Table of Contents

Getting ready� 243
How to do it…� 243

Writing queries with M� 250
Getting ready� 250
How to do it…� 251

Creating tables in M� 259
Getting ready� 259
How to do it…� 260

Leveraging M – tips and tricks� 264
Getting ready� 264
How to do it…� 264

8
Adding Value to Your Data

Technical requirements� 270
Adding columns from examples�270
Getting ready� 270
How to do it…� 270

Adding conditional columns� 278
Getting ready� 278
How to do it…� 279

Adding custom columns� 283

Getting ready� 283
How to do it…� 284

Invoking custom functions� 289
Getting ready� 289
How to do it…� 290

Clustering values� 298
Getting ready� 298
How to do it…� 298

9
Performance Tuning with Power BI Dataflows

Technical requirements� 304
Using Power BI dataflows � 304
Getting ready� 304
How to do it...� 305

Centralizing ETL with dataflows� 314
Getting ready� 315
How to do it...� 315

Building dataflows with Power
BI Premium capabilities� 326
Getting ready� 326
How to do it...� 327

Understanding dataflow best
practices� 341
Getting ready� 342
How to do it...� 342

Table of Contents xi

10
Implementing Query Diagnostics

Technical requirements� 353
Exploring diagnostics options� 354
Getting ready� 354
How to do it…� 354

Managing a diagnostics session� 358
Getting ready� 358
How to do it…� 358

Designing a report with
diagnostics results� 363
Getting ready� 363
How to do it…� 364
There's more…� 379

Using Diagnose as a Power
Query step� 379
Getting ready� 379
How to do it…� 380

Other Books You May Enjoy
Index

Preface
Power Query is a data preparation tool that enables data engineers and business users to
connect, reshape, enrich, and transform their data to facilitate relevant business insights
and analysis. With Power Query's wide range of features, you can perform no-code
transformations and complex M code functions at the same time to get the most out of
your data.

This Power Query book will help you to smartly connect to data sources, achieve intuitive
transformations, and get to grips with preparation practices. Starting with a general
overview of Power Query and what it can do, the book advances to cover more complex
topics such as M code and performance optimization. You'll learn how to extend these
capabilities by gradually stepping away from the Power Query GUI and into the M
programming language. Additionally, the book also shows you how to use Power Query
Online within Power BI Dataflows.

By the end of the book, you'll be able to leverage your source data, understand your data
better, and enrich it with a full stack of no-code and custom features that you'll learn to
design by yourself for your business requirements.

Who this book is for
This book is for data analysts, BI developers, data engineers, and anyone looking for
a desk reference guide to learn how Power Query can be used with different Microsoft
products to handle data of varying complexity. Beginner-level knowledge of Power BI and
the M language will help you to get the most out of this book.

What this book covers
Chapter 1, Getting Started with Power Query, focuses on what Power Query is, how the
tool has evolved, and where you can find/use it across Microsoft platforms. Then, we
share when to use Power Query within each Microsoft service (Power BI, Excel, Analysis
Services, Power Apps, and Azure Data Factory), giving you an idea of how different types
of users can leverage the same tool for different purposes.

xiv Preface

Chapter 2, Connecting to Fetch Data, shows an overview of connectors. Some best
practices will be shared on how to connect to some of the most common connector types.
The main ones identified are connections to files, folders, databases, and websites.

Chapter 3, Data Exploration in Power Query, focuses on data exploration features in Power
Query. You will learn how to choose a subset of data and explore data profiling tools and
query dependencies in order to see at a glance what data you will be dealing with. You
will see how to smartly use query and step panes with some shortcuts and examples.
Moreover, the schema and diagram views will be explained.

Chapter 4, Reshaping Your Data, focuses on how users can reshape their data. Most
common transformation tasks will be shown, sharing best practices that you can apply to
a wide range of dataset types. Other than data manipulation and wrangling, some artificial
intelligence features such as Cognitive Services will be shown.

Chapter 5, Combining Queries for Efficiency, describes how users can combine different
queries. Merge and append possibilities will be explained. Best practices for multiple file
combinations are also shown.

Chapter 6, Optimizing Power Query Performance, aims to clarify what features you can
leverage to optimize Power Query queries. The setup of parameters and their use will
be explained and we will take a deep dive into how to best approach query folding. It
is important for you to understand how query folding works and how to apply it in an
incremental refresh scenario.

Chapter 7, Leveraging the M Language, gives an outline of M coding. The differences from
the DAX language will be clarified and knowledge about how to deal with existing and
new queries using M code will be shared. The chapter will focus both on simpler and more
advanced scenarios involving M code.

Chapter 8, Adding Value to Your Data, aims to teach you how you can enrich your data by
using add column features that range from simpler ones such as columns from examples
to more advanced ones such as custom columns. Custom functions will be explored and
examples will be shared. The cluster values feature, one of the most recent, will be given as
an example.

Chapter 9, Performance Tuning with Power BI Dataflows, explains Power BI dataflows. It
will focus on how users can leverage the Power Query engine to create dataflows, how to
schedule a refresh, and how to allow other users to build data models by using dataflows
as central data sources. The aim is to clarify what the best practices are, such as to prefer
dataflows over Power Query in other Microsoft tools, and which are the most common
scenarios for their use.

Preface xv

Chapter 10, Implementing Query Diagnostics, focuses on Power Query diagnostics. There
is a specific tool for that and it is useful to describe how to use it and interpret its output.

To get the most out of this book
You will need a version of Power BI Desktop installed – the latest, if possible. All code
examples have been tested using Power BI Desktop (March 2021 version). They will also
work with future version releases too. The Power BI Gateway version used is February
2021 (3000.72.6). Also, future releases work the same way for the features explored in
this book (Note: the user interface may differ depending on the version you use or due to
future updates).

The majority of the tasks will need you to install Power BI Desktop, which is a free tool,
whereas some of them will require you to have a Power BI Pro license to access the
Power BI service on the web. In some recipes, you will need to have a Power BI Premium
capacity to access some advanced features, such as Power BI Dataflows. The licenses
needed for each chapter are the following:

•	 Chapter 1, Getting Started with Power Query, requires a Power BI Desktop free
license.

•	 Chapter 2, Connecting to Fetch Data, requires a Power BI Desktop free license.

•	 Chapter 3, Data Exploration in Power Query, requires a Power BI Desktop free
license.

•	 Chapter 4, Reshaping Your Data, requires a Power BI Desktop free license, Power BI
Pro, and Power BI Premium.

•	 Chapter 5, Combining Queries for Efficiency, requires a Power BI Desktop free
license.

•	 Chapter 6, Optimizing Power Query Performance, requires a Power BI Desktop free
license.

•	 Chapter 7, Leveraging the M Language, requires a Power BI Desktop free license.

•	 Chapter 8, Adding Value to Your Data, requires a Power BI Desktop free license,
Power BI Pro, and Power BI Premium.

xvi Preface

•	 Chapter 9, Performance Tuning with Power BI Dataflows, requires a Power BI
Desktop free license, Power BI Pro, and Power BI Premium.

•	 Chapter 10, Implementing Query Diagnostics, requires a Power BI Desktop free
license.

This book will help both users who already have some experience with Power Query to
discover features they were not aware of and beginner users to approach this tool with
concrete examples, leveraging the power of learning by doing. After reading this book,
you will have the skills to understand Power Query and keep an eye on https://
powerquery.microsoft.com/en-us/blog/ and https://powerbi.
microsoft.com/en-us/blog/ to enhance the knowledge you have acquired.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code from the book's GitHub repository (a link is available in the next
section). Doing so will help you avoid any potential errors related to the copying and
pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Power-Query-Cookbook. If there's an update to
the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781800569485_Colorimages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "In this recipe, you need to download the FactResellerSales
CSV file."

https://powerquery.microsoft.com/en-us/blog/
https://powerquery.microsoft.com/en-us/blog/
https://powerbi.microsoft.com/en-us/blog/
https://powerbi.microsoft.com/en-us/blog/
https://github.com/PacktPublishing/Power-Query-Cookbook
https://github.com/PacktPublishing/Power-Query-Cookbook
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781800569485_Colorimages.pdf
https://static.packt-cdn.com/downloads/9781800569485_Colorimages.pdf

Preface xvii

A block of code is set as follows:

(OldSalesAmount as number, Discount as number, TotalCosts as
number) =>

let

 NetSales = OldSalesAmount - (OldSalesAmount * Discount) -
TotalCosts

in

 NetSales

Bold: Indicates a new term, an important word, or words that you see on screen. For
instance, words in menus or dialog boxes appear in bold. Here is an example: "Click on
New Source and select Text/CSV."

Tips or important notes	
Appear like this.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to
do it..., How it works..., There's more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as follows:

Getting ready
This section tells you what to expect in the recipe and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous
section.

xviii Preface

There's more…
This section consists of additional information about the recipe in order to make you
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at
customercare@packtpub.com and mention the book title in the subject of your
message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata and fill in the
form.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
http://authors.packtpub.com

Preface xix

Share Your Thoughts
Once you've read Power Query Cookbook, we'd love to hear your thoughts! Please click
here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

https://packt.link/r/1-800-56948-3

https://packt.link/r/1-800-56948-3

1
Getting Started with

Power Query
Power Query is a data preparation tool that enables data engineers and business users to
connect, reshape, enrich, and transform their data. This allows them to facilitate relevant
business insights analysis. Power Query is a technology that strengthens self-service
business intelligence with an intuitive and consistent experience. It consists of a graphical
interface that facilitates the connection to data sources and the application of different
ranges of transformation.

Power Query is not a standalone tool; it can be used inside different tools in two different
versions: Power Query Desktop and Power Query Online. The first version is available
in Excel, Power BI, and SQL Server Analysis Services, while the second is available in the
Power BI service, Power Apps, Power Automate, Azure Data Factory, Azure Synapse, and
Dynamics 365 Customer Insights. Depending on where Power Query is used, users will be
able to store reshaped data in different ways: publish datasets to the Power BI service, load
data in Azure Data Lake with Common Data Model formatting, and load transformed
data to the Dataverse.

2 Getting Started with Power Query

The following recipes will be covered in this chapter:

•	 Installing a Power BI gateway

•	 Authentication to data sources

•	 Main challenges that Power Query solves

Technical requirements
In this chapter, you will be using the following:

•	 Power BI Desktop: https://www.microsoft.com/en-us/download/
details.aspx?id=58494

•	 Power BI Pro License: https://powerbi.microsoft.com/en-us/power-
bi-pro/

•	 Power BI gateway: https://powerbi.microsoft.com/en-us/gateway/

The minimum requirements for installation are as follows:

•	 .NET Framework 4.6 (Gateway release August 2019 and earlier)

•	 .NET Framework 4.7.2 (Gateway release September 2019 and later)

•	 A 64-bit version of Windows 8 or a 64-bit version of Windows Server 2012 R2 with
current TLS 1.2 and cipher suites

•	 4 GB of disk space for performance monitoring logs

You can find the data resources referred to in this chapter at https://github.com/
PacktPublishing/Power-Query-Cookbook/tree/main/Chapter01.

https://www.microsoft.com/en-us/download/details.aspx?id=58494
https://www.microsoft.com/en-us/download/details.aspx?id=58494
https://powerbi.microsoft.com/en-us/power-bi-pro/
https://powerbi.microsoft.com/en-us/power-bi-pro/
https://powerbi.microsoft.com/en-us/gateway/
https://github.com/PacktPublishing/Power-Query-Cookbook/tree/main/Chapter01
https://github.com/PacktPublishing/Power-Query-Cookbook/tree/main/Chapter01

Installing a Power BI gateway 3

Installing a Power BI gateway
Power BI users often need to work with data from on-premises sources, such as
filesystems, local files available on a PC, and databases not running on the cloud.
In order to make this data securely available once the report is published to the web,
a Power BI gateway needs to be installed. Microsoft offers two different types of gateway
for different scenarios, and their setup can be customized according to specific enterprise
configuration requirements, such as proxy, service account, communication, and high
availability settings. Users can choose one of the following two types:

•	 Standard (or enterprise) mode: This mode can be used to connect data sources to
Power Platform services, Logic Apps, and Analysis Services by multiple users. It has
to be run by users with admin rights and is meant for enterprise scenarios.

•	 Personal mode: This mode can be used by single users without the possibility of
sharing the files. This version is available for Power BI only. If you want to quickly
connect to an Excel file on your local machine and run tests without needing admin
rights, this mode is for you. It is meant for testing purposes.

Customers need monitoring options and analysis to decide whether to scale up or scale
down the gateway server to improve data movement performance. This recipe aims to
help users to decide which type of gateway to install, and to assist with the configuration
and monitoring options.

Getting ready
You can refer to this link to download a Power BI gateway: https://powerbi.
microsoft.com/en-us/gateway/.

In this recipe, we are going to install the standard (enterprise) mode gateway on a local
machine. It is recommended, though, to install the gateway on a server, especially in
enterprise scenarios.

In this chapter, Power BI Desktop needs to be installed on a machine that has access to the
data sources. Access to the Power BI service is also needed.

Download the data files on your local machine.

https://powerbi.microsoft.com/en-us/gateway/
https://powerbi.microsoft.com/en-us/gateway/

4 Getting Started with Power Query

How to do it…
Once you have downloaded the Power BI gateway, you are ready to start the setup:

1.	 Define the default path for your gateway resources, accept the terms, and run the
installation. Revise the minimum requirements for the machine where the setup is
going to be done:

Figure 1.1 – On-premises data gateway installation

2.	 Enter your work or school Microsoft Office 365 account. This account has to be in
the Azure Active Directory tenant, the one shared with Power BI. By entering your
organizational account, you will be able to manage gateways and add multiple data
sources using the Power BI service portal:

Installing a Power BI gateway 5

Figure 1.2 – On-premises gateway email admin

3.	 Click on Register a new gateway on this computer:

Figure 1.3 – Register a new gateway

6 Getting Started with Power Query

4.	 Give a name to the gateway and create a Recovery key. This key is needed if you
want to create a gateway cluster (a group of gateways), to migrate your existing
gateway, or to take over the gateway's ownership. Once you set the key, click on
Configure:

Figure 1.4 – Gateway recovery key definition
At this step, you can decide to change the default region to connect the gateway to
cloud services. The default region is the one where your Power BI or Microsoft
O365 tenant is located. If you want to change it, you'll select an Azure region, but
make sure that the region is close to you.

Installing a Power BI gateway 7

5.	 Once the configuration is completed, you should end up with the following view:

Figure 1.5 – Running the gateway application interface

This will be the default view when you open the gateway application. You can monitor the
health of the gateway and see what services can use the same gateway. This application
allows the gateway admin to customize the configuration.

8 Getting Started with Power Query

Managing the data gateway on the Power BI portal
Once you have installed the gateway and it is running on the machine, you can access
https://powerbi.com and log in to the Power BI portal with the credentials you
use to sign in to the gateway application. When you are logged in, complete the following
steps to see how to manage the data gateway:

1.	 Go to Manage gateways and access the section where you can find the running
gateway you set up before:

Figure 1.6 – Power BI service: Settings section

2.	 You will now be able to see gateways settings and administrators:

a) �Administrators: If you installed the gateway, you will be an admin by default.
You can use these sections to add other administrators:

https://powerbi.com

Installing a Power BI gateway 9

Figure 1.7 – Managing gateways: adding administrators
b) �Gateway Cluster Settings: On the left side, you can see the gateway that you

configured on your Windows machine. In the following screenshot, you can find
a list of data sources that you registered. Click on the three dots and then click on
ADD DATA SOURCE:

Figure 1.8 – Managing gateways: cluster view

10 Getting Started with Power Query

Name the data source and select the File type (you can explore and add other types,
such as SQL servers, folders, SAP, and ODBC). You can add on-premises data
sources that can be accessed by the gateway installed on a server that belongs to the
same data source domain:

Figure 1.9 – Adding data sources to the gateway

Installing a Power BI gateway 11

3.	 You will add one of the files that you downloaded. Add the Full path and enter the
credentials to access the data source:

Figure 1.10 – Adding credentials for data sources

4.	 When you click on Apply, Power BI will check the connection and, if the
connection succeeds, you will see a Connection Successful status:

Figure 1.11 – Data source connection outcome

12 Getting Started with Power Query

Once you have added data sources to be accessed through the gateway, you have
three checkboxes at the end of the page that you can flag:

a) �Allow user's cloud data sources to refresh through this gateway cluster: Check
this box if you plan to perform append and merge operations between on-prem
and cloud sources.

b) �Allow user's custom data connectors to refresh through this gateway cluster:
If you have a custom-developed connector built to use the gateway to access data
sources, you need to flag this box to refresh data.

c) �Distribute requests across all active gateways in this cluster: If you have other
gateways configured within the same cluster, you can enable this feature to
perform load balancing and distribute requests across all active clusters:

Figure 1.12 – Gateway Cluster Settings

5.	 Open Power BI Desktop, connect to one of the data sources you downloaded and
that you added in the previous steps, create a report, and publish it on the Power BI
service.

Installing a Power BI gateway 13

Follow these steps to check that your data source is used correctly with the gateway:

1.	 Once you have published the report and dataset in your workspace, click on the
three dots next to the dataset and go to Settings:

Figure 1.13 – Settings section for datasets

14 Getting Started with Power Query

2.	 Expand the Gateway connection section and check that the gateway is running
successfully:

Figure 1.14 – Defining dataset sources

3.	 You can map the data sources included in the dataset to sources that you created
in the Gateway Management view. Map to Finance-data and click on Apply.
You could also do it the other way around: create a report, publish it, access
the following view, click on Add to gateway, and be redirected to the Gateway
Management section, where you can add data sources to your gateway:

Figure 1.15 – Mapping a dataset to an existing gateway source

Authentication to data sources 15

How it works
From now on, you can refresh your datasets manually or at scheduled times. The high
flexibility is given by the fact that you can create single gateways or create clusters of
gateways following this recipe in order to meet high availability and load balancing
requirements. For each gateway or cluster of gateways, you can add or remove data
sources that use those gateways to create a connection between on-premises environments
and cloud services by allowing the following:

•	 A fast and secure connection

•	 A gateway that decrypts and uses stored credentials to access on-premises data
sources handling authentication

•	 Easy-to-use and straightforward administration, management, and troubleshooting
tools

Authentication to data sources
Power Query provides different connector types to a wide range of data sources. These
will be widely explained in the following chapter, but in this recipe, we will concentrate on
how authentication works for data sources.

Each connector provides different kinds of authentication. There are six main types of
authentication:

•	 Anonymous

•	 Windows

•	 Basic

•	 Organizational account

•	 Microsoft account

•	 Database

Depending on the type of connector and the Power Query version used, different
combinations of these options will be available for the user.

Once you connect to your data source and you perform Power Query transformations,
you will be able to change the type of authentication and the data source without losing
the work you have done.

16 Getting Started with Power Query

Getting ready
In this recipe, in order to test different types of connections, you need to have the
following data sources to which you can connect:

•	 An Azure SQL Database with AdventureWorks data, database credentials, and
access through Azure Active Directory Authentication (log in with your Microsoft
account)

•	 A Parquet file named FactInternetSales in a local folder on your PC

How to do it…
Once you have opened your Power BI Desktop application, you are ready to follow
these steps:

1.	 Go to Get data and click on More:

Figure 1.16 – Get data

Authentication to data sources 17

Search for the Azure SQL database connector and select it:

Figure 1.17 – Azure connectors section

18 Getting Started with Power Query

2.	 Enter the name of the server where you have AdventureWorks data:

Figure 1.18 – SQL Server database connector

3.	 Click on Database, enter your database credentials in order to authenticate, and
click on Connect:

Figure 1.19 – SQL Server authentication

4.	 Select the FactInternetSales table when you recreate the AdventureWorks
database on your server and click on Transform Data:

Authentication to data sources 19

Figure 1.20 – Data source preview

5.	 A Power Query window pops up, and you are ready to perform some Power Query
transformations:

Figure 1.21 – Data preview in Power Query

20 Getting Started with Power Query

6.	 Open your Advanced Editor and paste the M code you find in MCodeChapter1.
txt to reproduce the following Power Query Applied steps:

a) Remove columns

b) Subtraction between two columns

c) Custom column

In the file, you will have to fill in some information regarding your server and the
name of your database. Then, all steps will be applied:

Figure 1.22 – Advanced Editor for FactInternetSales

The idea in this recipe is not to focus on the transformations, but to demonstrate that you
can change data sources without doing everything from scratch and keeping your M code
with your transformations.

Authentication to data sources 21

Change existing data source permissions
If you want to change permissions, such as switch from database credentials to Microsoft
account authentication, you don't have to do everything from scratch, but you can do the
following:

1.	 Click on Data source settings and the following window will pop up:

Figure 1.23 – Data source settings

2.	 From here, you can do the following:

a) �Change Source: Click on this to change the name of the server. In this way, you
will keep the connector type.

22 Getting Started with Power Query

b) �Edit Permissions: You can change the type of permission used to authenticate.
Click on Edit, go to the Microsoft Account tab, and sign in with your account
details:

Figure 1.24 – Data source settings: Edit Permissions
You can perform the authentication from the following window:

Figure 1.25 – Data source credentials

Authentication to data sources 23

c) �Clear Permissions: You can click on this to delete permissions to connect to this
data source. This can be useful when sharing the file with other users and you
want to clear permissions. Be careful because once you clear it, you will need to
re-connect and re-authenticate.

3.	 Click on Save and close Data source settings. You can see that nothing has
changed, and you kept all your transformations.

Change connector type
What if you want to keep the same transformations, but change the type of connector?
You can do it by using the Advanced Editor.

Complete the following steps to use a Parquet file as a data source. You can find
InternetSales.parquet in the GitHub folder:

1.	 From the Power Query view, go to Get Data and search for the Parquet connector.
Paste the path where you downloaded this file on your local computer:

Figure 1.26 – Parquet connector

2.	 Click on OK and open Advanced Editor on the InternetSales query:

Figure 1.27 – Advanced Editor for InternetSales

24 Getting Started with Power Query

3.	 Copy the following line of code and close Advanced Editor:

Source = Parquet.Document(File.Contents(«C:\Data\
InternetSales.parquet»))

4.	 Select the FactInternetSales query and open Advanced Editor. Delete the
first three lines of code, as shown in the following screenshot:

Figure 1.28 – Advanced Editor for FactInternetSales: code selection
Now, paste the code you copied in Step 3:

Figure 1.29 – Advanced Editor for FactInternetSales: code replaced

5.	 At #"Changed Type", replace dbo_FactInternetSales with Source in
order to correctly recall the previous step in Power Query.

6.	 Close Advanced Editor and refresh the query. You will see that, even by changing
the data source (from Azure SQL Database to a local Parquet file), the applied steps
will be executed.

Main challenges that Power Query solves 25

How it works
Power Query, thanks to its flexibility, offers different options to change data sources and
edit data permissions intuitively in order to not waste time managing custom connections
when data has to be explored and refreshed. Imagine that you have to deploy to a different
environment with a different data source connection: you don't need to rebuild the
queries, but just change the source and deploy it to the correct environment.

Main challenges that Power Query solves
By going through the previous recipe, you had the chance to see the variety of
transformations and preparation options that Power Query provides.

Power Query aims to solve some of the traditional challenges linked to data analysis:

•	 Responding to the need for a low code tool for business analysts who need to make
corrections quickly without doing things from scratch

•	 Managing different data types and volumes with quick transformations

•	 Having a consistent experience across platforms and enabling different users to
collaborate even if they are using different tools

Getting ready
For this recipe, you need to open the PBIX file provided within the materials. Moreover,
you need a Power BI Premium Capacity or a Power BI Embedded capacity allocated and
linked to your Power BI tenant.

How to do it…
Starting from the first challenge, when Power Query was introduced in Excel, it changed
the way business users used Excel. It helped users to perform tasks and transformations
that would be more complex with a combination of Excel formulas.

26 Getting Started with Power Query

Using a low code tool
With a friendly interface, Power Query makes users perform the following actions with
a low code approach:

•	 Connect to data sources with built-in connectors:

Figure 1.30 – Get Data

Main challenges that Power Query solves 27

•	 Use a wide set of options and perform a wide range of transformations by clicking
a few buttons:

a) Transform data:

Figure 1.31 – Power Query: Transform section
b) Add columns and dimensions, and perform low code or custom operations:

Figure 1.32 – Power Query: Add Column section
c) �Have a persistent trace of every change done thanks to the APPLIED STEPS

section:

Figure 1.33 – Applied Steps section

28 Getting Started with Power Query

d) �Once you've performed a single step, you can always go back and change it by
clicking on the gear icon:

Figure 1.34 – Editing a single step

Main challenges that Power Query solves 29

Managing data sources and data volumes
With the next challenge, users may think that different data sources will be treated and
shown differently, but in fact, Power Query standardizes how data can be explored. Once
you connect either to SAP or a web page or to Google analytics, once you expand tables,
you will be able to perform the same transformations, to aggregate and merge queries as if
they come from the same source. All the queries listed here are at the same level.

Often, users do not know how to handle large volumes of complex data in Power Query
because they end up with low-performing Power BI files since they encounter a memory
restriction because of where they are running Power BI Desktop. It's important to
optimize transformations, as shown in the following examples:

•	 Set the right data type for each column, and be careful with the no-datatype column
indicated by ABC123:

Figure 1.35 – Selecting the data type

30 Getting Started with Power Query

•	 Try to combine the same transformations in fewer steps. Try not to do this:

Figure 1.36 – Applied steps: combining transformations
Merge steps to run a unique step for changing the type and another one for
removing columns, as in the following example:

Figure 1.37 – Applied steps: consolidated transformations

Main challenges that Power Query solves 31

You will get the same results but with more compact code and making your
transformations more consistent and more easily interpreted by other users.

•	 Use parameters and range filters to reduce the working dataset for developing your
queries. This will lead to a PBIX file size reduction, a reduction in your machine
memory usage, and a reduction in the time it takes to load your final model to the
cloud. This topic will be covered in Chapter 6, Optimizing Power Query Performance.

It is possible to expand tables' volumes once the model has been deployed.

How volume is handled in Power Query depends on which platform is running, because
there are different engines underneath: there are differences in running queries on Power
Query Online and Desktop.

For example, when running Power Query Online on the Power BI service (a feature
that is called Power BI Dataflows) in a Premium Capacity (or, alternatively, Power BI
Embedded), you can configure the resources allocated to perform transformations:

•	 Go to the Admin portal when you're logged in to the Power BI service:

Figure 1.38 – Opening Admin portal in the Power BI service

32 Getting Started with Power Query

•	 Now, navigate to Capacity settings:

Figure 1.39 – Admin portal in the Power BI service

•	 Click on Capacity settings, expand the Workloads section, and navigate until you
find Dataflows:

Figure 1.40 – Capacity management in the Power BI service

Main challenges that Power Query solves 33

Once you have expanded the Workloads section, you can see a part dedicated to
dataflows, as shown in the following screenshot:

Figure 1.41 – Capacity management: dataflows

•	 This section allows us to optimize and control Dataflows performance. You can
set Max Memory (%) relative to the overall capacity node that can be used by
dataflows; enable/disable Enhanced Dataflows Compute Engine, which provides
up to 20x faster performance when working at scale; define the maximum
Container Size used for each entity (the default value is 700 MB, but can be set up
to 5,000 MB); and determine the maximum memory to be used with the compute
engine.

Having a consistent experience across platforms
Power Query can be used as a common ground technology between different cloud
services. Every tool that contains Power Query is designed to be used in different contexts,
teams, and company divisions.

The idea is to enable users with different skills and different tools to collaborate. Different
types of users within a company can use the same tool, Power Query, integrated and
running seamlessly within the Microsoft platform.

34 Getting Started with Power Query

Imagine a business analyst who requires a set of transformations that they developed
locally in their Power BI Desktop tool, and they want these steps to be replicated by
a data engineer in IT in order to scale this dataflow within the enterprise. The benefit of
having Power Query in a service such as Azure Data Factory aims to solve this. Ideally, the
business analyst can share their M code with IT, and they can analyze transformations and
replicate them with the same language within a Power Query activity in Data Factory.

In this way, Power Query is a tool for agile collaboration in the data environment.

2
Connecting to

Fetch Data
One of the main aspects of Power Query is the wide range of data connectors. It offers
a varied range of connection options and users can connect to data sources that reside on
the cloud, on premises, and in local directories intuitively.

The idea is to treat all data sources at the same level and users (once they select the data
they want to transform coming from different sources) can operate and combine them
without caring about the data sources' original structure.

In this chapter, there will be an overview of connectors, and we will cover some of the best
practices for how to connect to some of the most common connector types.

The recipes that will be covered in this chapter are the following:

•	 Getting data and connector navigation

•	 Creating a query from files

•	 Creating a query from a folder

•	 Creating a query from a database

•	 Creating a query from a website

36 Connecting to Fetch Data

Technical requirements
For this chapter, you will be using the following:

•	 Power BI Desktop: https://www.microsoft.com/en-us/download/
details.aspx?id=58494

•	 A Power BI Pro license: https://powerbi.microsoft.com/en-us/
power-bi-pro/

•	 Minimum requirements for installation:

a) .NET Framework 4.6 (Gateway release August 2019 and earlier)

b) .NET Framework 4.7.2 (Gateway release September 2019 and later)

c) �A 64-bit version of Windows 8 or a 64-bit version of Windows Server 2012 R2
with current TLS 1.2 and cipher suites

d) 4 GB of disk space for performance monitoring logs
You can find the data resources referred to in this chapter at https://github.com/
PacktPublishing/Power-Query-Cookbook/tree/main/Chapter02.

Getting data and connector navigation
Power Query, thanks to its interface, offers an easy way to connect to data sources. In the
previous chapter, you saw different authentication types, but here you will get an overview
of the connector types and learn which one fits best. You will also learn the difference
between preview (or beta) and general availability connectors.

Getting ready
For this recipe, you need to have Power BI Desktop running on your machine.

How to do it...
Open Power BI Desktop and you will be ready to perform the following steps:

1.	 The first step in every version of the Power Query tool, whether it is the online or
desktop version, is to click on Get data:

https://www.microsoft.com/en-us/download/details.aspx?id=58494
https://www.microsoft.com/en-us/download/details.aspx?id=58494
https://powerbi.microsoft.com/en-us/power-bi-pro/
https://powerbi.microsoft.com/en-us/power-bi-pro/
https://github.com/PacktPublishing/Power-Query-Cookbook/tree/main/Chapter02
https://github.com/PacktPublishing/Power-Query-Cookbook/tree/main/Chapter02

Getting data and connector navigation 37

Figure 2.1 – Get data in Power Query Desktop (left) and Get data in Power Query online (right)

2.	 Once you expand the Get data section, you will end up with the following view in
the Power Query Desktop version:

Figure 2.2 – Get Data All connectors view in Power Query Desktop

38 Connecting to Fetch Data

And if you expand the same section in the Power Query online version,
you will see the following:

Figure 2.3 – Get Data All categories view in Power Query online

Both versions have the following connectors divided into the same categories:

•	 File: You can connect to different types of files, such as Excel, CSV/TXT, XML,
JSON, Folder, PDF, and Parquet.

•	 Database: You can connect to all mainstream databases such as Microsoft, Oracle,
IBM, open source databases (MySQL, PostgreSQL, and MariaDB), Teradata, SAP,
Amazon Redshift, Google BigQuery, Snowflake, and many others. This wide variety
allows the user able to connect to the different sources and not have concerns about
having the required data in only one standard data source.

Creating a query from files 39

•	 Power Platform: You can connect live to Power BI datasets already published in
the Power BI service. You will have the ability to connect to already prepared and
transformed queries with the Power BI dataflow connectors and perform additional
steps without doing everything from scratch.

•	 Azure: You can connect to all Azure Data Services sources, such as Azure SQL
Database, Azure Synapse, Azure Data Lake Storage, and to Azure open source
services such as Azure Databricks and Azure HDInsight.

•	 Online Services: You can connect to a wide range of third-party services and use
native connectors to the Dynamics platform, Salesforce, Google Analytics, and
other services that are continuously updated and released.

•	 Other: This category collects more generic connectors, such as web connectors
(used for getting data from websites, to make API calls, or to import files from the
web), OData feeds, ODBC, and R and Python scripts. This set of connectors allows
users to leverage some common connection logic that is used in other tools that can
also be replicated with Power Query.

Users have to check what connectors are available in each version of Power Query – either
the desktop or online version – and they have to research new connectors' availability.
There are new ones both in beta (as shown in the following figure) and a general
availability version with every release of Power Query. This list is constantly updated in
the Microsoft documentation:

Figure 2.4 – Connector in the preview example

Creating a query from files
Power Query users (when they start to use and explore the tool) usually start by
connecting to a local file. They can see from the start that the main file types are supported
and each of these will display data in a readable format.

40 Connecting to Fetch Data

In this recipe, we will connect to an Excel file and see how to navigate and expand the
different sheets and how to connect to cut-off text/CSV files.

Figure 2.5 – Get Data File section

Getting ready
In this recipe, in order to test different types of file connectors, you need to download the
following files in a local folder:

•	 The AdventureWorksSales Excel file

•	 The FactResellerSales CSV file

In this example, we will refer to the C:\Data folder.

Creating a query from files 41

How to do it...
Once you have opened your Power BI Desktop application, perform the following steps:

1.	 Go to Get data and click on Excel workbook:

Figure 2.6 – Get data Excel connector

2.	 Navigate to your local folder where you saved the Excel file, select it, and open it:

Figure 2.7 – Local folder view

42 Connecting to Fetch Data

3.	 Once you open it, the following window will pop up:

Figure 2.8 – Excel data preview
Each item in the left pane matches an item in the Excel file. By only clicking on an
item, you will see a preview of the data in the right pane and if you check it, you
will include the item in the Power Query view. Therefore, flag the following queries:
Customer, Date, and Product. Click on Transform Data.

4.	 Each sheet will correspond to a query. From now on, you can perform all
transformations as you would with any other data source type:

Creating a query from files 43

Figure 2.9 – Power Query interface

Let's add a connection to a CSV file:

1.	 Click on Get data and select the Text/CSV connector:

Figure 2.10 – Get data Text/CSV connector

44 Connecting to Fetch Data

2.	 Navigate to the local folder where you saved the FactResellerSales CSV file.
Select it and open it as in the previous section with the Excel file. The following
window will pop up:

Figure 2.11 – CSV data preview

Creating a query from files 45

For each file, you can define the following:

a) �File Origin: Define the file encoding (in this case, we will keep the default
Unicode UTF-8).

Figure 2.12 – Define the file encoding
b) �Delimiter: Select the right delimiter (in this case, we will keep the default

Comma):

Figure 2.13 – Define the delimiter

46 Connecting to Fetch Data

c.) �Data Type Detection: This will refer to the first applied step in Power Query
when it detects data types for each column (in this case, we will detect data types
based on the first 200 rows):

Figure 2.14 – Define Data Type Detection

3.	 On the bottom left of this window, you can also extract information from the CSV
file by clicking on Extract Table Using Examples:

Figure 2.15 – Extract Table Using Examples button
The following section will appear:

Figure 2.16 – Extract Table Using Examples interface

Creating a query from files 47

4.	 You can define your columns and which data to extract by filling in the table at the
bottom. Have a look at the following example: name the first column ResellerKey
and write in the first row the value 676, which is the first ResellerKey value you see
in the example, and click on Enter:

Figure 2.17 – Insert values example

5.	 If you look at row 5 in Figure 2.18 (the left image), you can see that a wrong value
has been detected. In this case, you can click on it and insert the right one and you
will observe how all values in the column will be corrected:

Figure 2.18 – Insert value detail example (left) and fill in missing or wrong values (right)

48 Connecting to Fetch Data

6.	 You can add a second column and repeat the steps done with the first. Name the
second column EmployeeKey and insert the first value. Click Enter and you will
see the corresponding rows filled:

Figure 2.19 – Create a second column example

7.	 At the end, click on OK and you will see the CSV in the Power Query interface as
shown in the following screenshot:

Figure 2.20 – Power Query interface

Creating a query from a folder 49

In the APPLIED STEPS section, you will see some activities mapped as a result of Extract
Table Using Examples performed previously.

How it works...
Power Query, thanks to these file connectors, allows users to connect to single files and
perform some pre-transformation tasks allowing them to load just relevant data in the
usual interface. However, these connectors – Excel, TXT/CSV, and also Parquet file are
related to single files. We will see in the following recipe how to connect to multiple files.

Creating a query from a folder
After playing with single files as the previous recipe showed, you need to load more files as
their analytical workloads grow. If files are organized in folders, users can leverage a folder
connector to load multiple files. Imagine having a collection of CSV files where each
contains sales data for a specific day. What if we want to connect to a folder that contains
these files, and we want to load them in Power Query as a single table? The way to go is to
leverage the folder connector.

In this recipe, we will see how to connect to a folder with sales data in CSV format and a
folder with finance data in Excel format (each file contains multiple sheets).

Getting ready
In this recipe, in order to test different types of file connectors, you need to download the
following folders, each containing a set of files:

•	 The CSVFiles folder containing the following CSV files:

Figure 2.21 – Local folder with CSV files

50 Connecting to Fetch Data

•	 The ExcelFiles folder containing the following Excel files:

Figure 2.22 – Local folder with Excel files
In this example, I will refer to the following paths:

a) C:\Data\ExcelFiles

b) C:\Data\CSVFiles
You can find the folders and the related files referred to in this chapter at https://
github.com/PacktPublishing/Power-Query-Cookbook/tree/main/
Chapter02/ExcelFiles and https://github.com/PacktPublishing/
Power-Query-Cookbook/tree/main/Chapter02/CSVFiles.

How to do it...
Open the Power BI Desktop application and perform the following steps:

1.	 Go to Get data, click on Folder, and the following window will pop up. You can
directly enter your folder path or click on Browse… and select it from the usual
browsing section of your machine:

Figure 2.23 – Folder connector

https://github.com/PacktPublishing/Power-Query-Cookbook/tree/main/Chapter02/ExcelFiles
https://github.com/PacktPublishing/Power-Query-Cookbook/tree/main/Chapter02/ExcelFiles
https://github.com/PacktPublishing/Power-Query-Cookbook/tree/main/Chapter02/ExcelFiles
https://github.com/PacktPublishing/Power-Query-Cookbook/tree/main/Chapter02/CSVFiles
https://github.com/PacktPublishing/Power-Query-Cookbook/tree/main/Chapter02/CSVFiles

Creating a query from a folder 51

2.	 Once you click on OK, you will see the following section with a list of files
contained in the folder:

Figure 2.24 – How files from the folder are displayed
At the bottom right, you can see some actions to perform:

a) �Combine & Transform Data: You can combine data by appending existing data
at this phase and open Power Query.

b) �Combine & Load: You can append tables, load them, and start creating reports
or analyzing data with Excel.

c) Load: Load this list into the Power BI dataset as it is.

d) �Transform Data: This opens the Power Query interface and allows you to do
custom transformations.

52 Connecting to Fetch Data

3.	 Click on Transform Data and you will see the following columns:

Figure 2.25 – List of files in the Power Query view
From here, you can do one of these actions:

a) Expand a single CSV by clicking on Binary in the Content column:

Figure 2.26 – Expanded table

Creating a query from a folder 53

b) Expand the Attributes column with some relevant information:

Figure 2.27 – Expand the Attributes column
c) Combine files by clicking on the icon on the right, which means Combine:

Figure 2.28 – The Combine icon on the Content column

Data combination is a concept that will be widely explored in Chapter 5, Combining
Queries for Efficiency.

54 Connecting to Fetch Data

Now we will repeat the same steps but with the other folder containing Excel files:

1.	 The view that opens is the following:

Figure 2.29 – List of Excel files in the Power Query interface
It is very similar to the one we saw previously because you can perform the
following actions:

a) �If you click on Binary in row 1, you will end up with a table with a list of the
sheets contained in the Excel file FinanceData-OnlineChannel. If you click
on Table in row 1, you will expand the sheet Sales:

Figure 2.30 – First level of the expanded table

Creating a query from a folder 55

b) If you click on Combine, the following window will pop up:

Figure 2.31 – Table preview during the Combine step

This built-in combine function will allow you to append the Sales sheets from three
different Excel files. This topic will be widely explored in Chapter 5, Combining Queries
for Efficiency.

How it works...
The idea of this recipe was to show you the potential of the folder connector because often
users end up connecting multiple times to single files and then perform an append step.
This takes time, and it is difficult to maintain when the number of files becomes bigger.

The folder connector allows you to refresh your data and perform all Power Query
operations automatically. If you add a file in your folder and click on refresh, you will end
up with a final table enriched with data coming from this last file.

56 Connecting to Fetch Data

Creating a query from a database
This recipe shows how to connect to a database and how tables and views are displayed
while selecting which tables to display and work with in Power Query.

You have two generic options:
•	 Select tables or views as you would see them with a database viewer such as SQL

Server Management Studio.

•	 Retrieve tables by writing SQL statements in a specific section that will pop up.

Getting ready
In this recipe, in order to connect to a SQL database, you need to have an Azure SQL
Database instance with AdventureWorks data, database credentials, or access through
Azure Active Directory authentication (log in with your Microsoft account).

How to do it...
Once you open the Power BI Desktop application, you are ready to perform
the following steps:

1.	 Go to Get data, click on More, and browse for Azure SQL database:

Figure 2.32 - Azure Connectors section

Creating a query from a database 57

2.	 Enter the following information (expanding Advanced options):

a) Server: Server name

b) Database: Adventureworks

c) Data Connectivity mode: Import

d) �SQL statement: This is a SQL view executed using the data source based
on two tables in the database. The view is built as a SQL join between
FactResellerSales and DimSalesTerritory:
SELECT s.[ProductKey]

 ,s.[SalesTerritoryKey]

 ,s.[SalesOrderNumber]

 ,s.[SalesOrderLineNumber]

 ,s.[RevisionNumber]

 ,s.[OrderQuantity]

 ,s.[UnitPrice]

 ,s.[ExtendedAmount]

 ,s.[UnitPriceDiscountPct]

 ,s.[DiscountAmount]

 ,s.[ProductStandardCost]

 ,s.[TotalProductCost]

 ,s.[SalesAmount]

 ,s.[OrderDate]

 ,p.[SalesTerritoryRegion]

 ,p.[SalesTerritoryCountry]

 ,p.[SalesTerritoryGroup]

 FROM [dbo].[FactResellerSalesXL_CCI] s

LEFT OUTER JOIN [dbo].[DimSalesTerritory] p ON
s.[SalesTerritoryKey] = [p.SalesTerritoryKey]

58 Connecting to Fetch Data

3.	 Copy and paste the code in the SQL statement section in order to get this view as
the output table you will work on in Power Query:

Figure 2.33 – SQL Server database

4.	 Enter authentication details:

Figure 2.34 – SQL Server database authentication

Creating a query from a database 59

5.	 After signing in, the output of the SQL statement will pop up as follows:

Figure 2.35 – Table preview

6.	 Click on Transform Data in order to open the Power Query interface:

Figure 2.36 – Data preview in Power Query

60 Connecting to Fetch Data

7.	 Click on Get data and select the connector Azure SQL Database. In this case, we
won't enter a SQL statement, but we will select an existing table in the database:

Figure 2.37 – SQL Server database connector

8.	 After signing in, a preview interface will appear, and you will be able to select the
tables that you want to open in Power Query after clicking on OK:

Figure 2.38 – SQL Database Navigator

Creating a query from a database 61

9.	 You will see on the left a set of queries as an output of connecting directly to the
database tables and writing a SQL statement querying the database as you would do
with any other database viewing tool:

Figure 2.39 – Data preview in Power Query

If you open Advanced Editor for both types, you will notice that if you need to change
the SQL code or you have to change the table name, you can do that directly from the
Advanced Editor window:

a) �The SalesData table's Advanced Editor code where you can see the details of the
query run against the data source:

Figure 2.40 – Advanced Editor code for a SalesData query

62 Connecting to Fetch Data

b) �The DimDate table's Advanced Editor code where you can see the details of the
connection Source, the database retrieved from the server, Adventureworks,
and the table selected from the data source DimDate:

Figure 2.41 – Advanced Editor code for the DimDate Query

How it works...
The Azure SQL Database connector also reflects how other database connectors work.
If you connect to Amazon Redshift or an Oracle database, the experience will be very
similar. Power Query provides a wide range of options for relational data sources and
some of them may need the installation of specific drivers. For example, if you connect
to SAP or Oracle, you have to install additional components (for example, in Oracle, the
additional components will be the Oracle Data Access Components (ODAC)).

Creating a query from a website
Data is not only located in databases, but also in files, online services, and third-party
applications as a growing number of users require the ability to connect to information
available on the web. The idea behind the web connector is to allow easy and intuitive
information extraction from websites. In this section, we will explore the possibilities
of this connector and we will connect to a web page to extract data in an easily readable
format.

Creating a query from a website 63

Getting ready
For this recipe, you need Power BI Desktop and access to the following
website: https://www.packtpub.com/eu/all-products.

How to do it...
In this recipe, the idea is to retrieve data from the Packt online catalog. By clicking on the
preceding link, you will see the following site:

Figure 2.42 – Packt online book catalog

https://www.packtpub.com/eu/all-products

64 Connecting to Fetch Data

Imagine you want to extract data regarding the books available on this site.

Open Power BI Desktop and follow these steps:

1.	 Go to Get data and click on Web. Insert the link in the URL field:

Figure 2.43 – Web connector

2.	 Authenticate as Anonymous (since it is a public website) and click on Connect:

Figure 2.44 – Web connector authentication

Creating a query from a website 65

3.	 After authenticating, the following preview window will pop up where, on the left,
you can find a list of suggested tables and, on the right, you can see a data preview:

Figure 2.45 – Web tables preview

66 Connecting to Fetch Data

4.	 If you click on Transform Data, you will open the Power Query interface and then
you can rename and clean up your data:

Figure 2.46 – Web data preview in Power Query

We will try another feature to extract data from the website and test an advanced link by
inserting filters at the URL level:

1.	 Go to Get data and select the Web connector. Click on Advanced and
split the URL https://www.packtpub.com/eu/all-products?
released=Available&tool=Azure&vendor=Microsoft into three parts
as in the next screenshot and click on OK:

Figure 2.47 – Web connector advanced

https://www.packtpub.com/eu/all-products?released=Available&tool=Azure&vendor=Microsoft
https://www.packtpub.com/eu/all-products?released=Available&tool=Azure&vendor=Microsoft

Creating a query from a website 67

2.	 The preview window will pop up. Click on Add Table Using Examples:

Figure 2.48 – Add Table Using Examples button

3.	 Start naming the columns as follows:

a) Title

b) Author

c) Nr. Pages

d) Publication Date

The columns should look like the ones in the following screenshot:

Figure 2.49 – Add Table Using Examples

68 Connecting to Fetch Data

4.	 Start filling in the first rows of each column and you'll see the other rows populate
automatically:

Figure 2.50 – Add Table Using Examples details

5.	 Click on OK and you will generate a table within the Custom Tables section that
you can select and load into Power Query:

Figure 2.51 – Insert custom table from examples

Creating a query from a website 69

With these simple steps, it is possible to connect and extract information from a website
with a no-code approach. Users can focus on the content of data and not on the process of
how to connect since Power Query allows them to do it in a few steps.

How it works...
This web connector not only allows users to connect to data from web pages by leveraging
pre-defined tables identified by Power Query, but it also gives the ability to provide data
examples from a web page and generate a custom table with relevant information for
the user.

3
Data Exploration in

Power Query
In a business context where data is acquiring more value, users—both business analysts
and technical users—need a tool to easily explore their data. In order to get relevant
insights from data that is continuously growing in amount and in terms of complexity,
you need to have at your disposal a range of features and capabilities that will allow you to
investigate aspects such as data size, quality, distribution, types, and other factors that will
be covered in this chapter.

This chapter is focused on the data exploration features of Power Query. You will learn
how to choose a subset of data and explore data profiling tools and query dependencies
in order to see at a glance the data you will be dealing with. You will see how to smartly
use Queries and Steps panes, with shortcuts and examples. Moreover, Schema view and
Diagram view will be explained.

72 Data Exploration in Power Query

The recipes that will be explored in this chapter are listed here:

•	 Exploring Power Query Editor

•	 Managing columns

•	 Using data profiling tools

•	 Using Queries pane shortcuts

•	 Using Query Settings pane shortcuts

•	 Using Schema view and Diagram view

Technical requirements
For this chapter, you will require the following:

•	 Power BI Desktop (https://www.microsoft.com/en-us/download/
details.aspx?id=58494)

•	 A Power BI Pro license and access to the www.powerbi.com portal

•	 A Power BI workspace on the Power BI service

The minimum requirements for installation are listed here:

•	 .NET Framework 4.6 (Gateway release August 2019 and earlier)

•	 .NET Framework 4.7.2 (Gateway release September 2019 and later)

•	 A 64-bit version of Windows 8 or a 64-bit version of Windows Server 2012 R2 with
current Transport Layer Security (TLS) 1.2 and cipher suites

•	 4 gigabytes (GB) disk space for performance monitoring logs

You can find the data resources referred to in this chapter at https://github.com/
PacktPublishing/Power-Query-Cookbook/tree/main/Chapter03.

Exploring Power Query Editor
The aim of this recipe is to illustrate and describe the different sections of Power Query.
The tool's design is studied to offer you an intuitive experience, and it is important to
understand its logic to get the biggest benefit from it.

https://www.microsoft.com/en-us/download/details.aspx?id=58494
https://www.microsoft.com/en-us/download/details.aspx?id=58494
http://www.powerbi.com
https://github.com/PacktPublishing/Power-Query-Cookbook/tree/main/Chapter03
https://github.com/PacktPublishing/Power-Query-Cookbook/tree/main/Chapter03

Exploring Power Query Editor 73

Getting ready
For this recipe, you need to have Power BI Desktop running on your machine.

How to do it…
Once you have opened Power BI Desktop, perform the following steps:

1.	 Click on Transform data to open an empty Power Query interface:

Figure 3.1 – Opening Power Query

2.	 Click on Enter data and create a table by creating two columns, ID and Value, and
by entering values, as shown in the following screenshot:

Figure 3.2 – Entering data

74 Data Exploration in Power Query

3.	 Click on OK.

The idea is to have an example query to illustrate the different Power Query user
interface (UI) sections because, in this way, you will have all the different buttons
under each tab activated.

It is possible to explore the Power Query interface to discover shortcuts and sections
that will help you transform and enrich your data:

Figure 3.3 – Power Query UI

Generally, the UI can be divided into the following sections:

•	 The query ribbon includes six tabs:

a) �Home: This section consists of the most common tasks that you typically
perform with Power Query. You can connect to a data source, expand data source
settings, create and manage parameters, refresh queries' previews, and access the
Advanced Editor.

You can also perform some simple tasks such as selecting a subset of data
(choosing columns and rows to be kept), splitting columns, replacing values,
and grouping data.

You can append and merge queries and access more advanced features, such as
AI Insights.

Exploring Power Query Editor 75

b) �Transform: This section includes tasks that transform existing data. You can
pivot/unpivot columns and rows, replace values, apply calculations on columns,
define data type formats, and you can also run Python and R scripts on data in
the selected query:

Figure 3.4 – Transform tab
c) �Add Column: This tab enables you to enrich data and add new information that

originates from existing data. It is possible to add conditional or custom columns,
extract values, and apply numeric calculations. From this section, you can apply
AI Insights:

Figure 3.5 – Add Column tab

76 Data Exploration in Power Query

d) �View: This section allows you to enable or disable the view of certain sections of
the Power Query UI—for example, the Query Settings pane and the Formula
Bar. Tools for data quality analysis are located under this tab, and the Advanced
Editor can be accessed from here as well. Moreover, it is possible to open the
Query Dependencies window:

Figure 3.6 – View tab
e) Tools: This section contains Diagnostics tools:

Figure 3.7 – Tools tab
f) �Help: This tab allows you to have quick access to learning resources, Power Query

documentation, and community blogs and web pages:

Figure 3.8 – Help tab

Additionally, in the Queries section in the left-hand pane, you can find a list of the current
Power Query session queries.

Exploring Power Query Editor 77

The central table view shows the data from the selected query. You can perform some
steps directly from the table view by right-clicking on the column name:

Figure 3.9 – Table view shortcut

The Query Settings section on the right shows all the applied steps that you do while
transforming and enriching data. In this way, every data type change, new column
addition, or new calculation performed can be traced.

Note
It is important that you are aware of how the UI is organized in order to be able
to quickly find and access the transformations you need.

78 Data Exploration in Power Query

Managing columns
After connecting to a data source from Power Query and after having selected the table to
which it is connected, it is best practice to reduce and delete all data that is not relevant for
the preparation and transformation processes and therefore for reporting.

You have the possibility to choose the columns you want to work with, thereby reducing
the amount of data involved. With this recipe, we will see how to quickly and intuitively
select columns in order to speed up the data preparation process.

Getting ready
For this recipe, you need to download the FactResellerSales comma-separated
values (CSV) file into your local folder.

In this example, we will refer to the C:\Data folder.

How to do it…
Once you have opened your Power BI Desktop application, you are ready to perform the
following steps:

1.	 Click on Get Data and select the Text/CSV connector.
2.	 Browse to your local folder where you downloaded the FactResellerSales

CSV file and open it. A window with a preview of the data will pop up; click on
Transform data.

3.	 Within the Home tab, focus on the Manage Columns section:

Figure 3.10 – Manage Columns

You have two possibilities to restrict the number of columns:

•	 Choose Columns—Click this to choose columns you wish to keep

•	 Remove Columns—Click this to remove columns you do not need

Managing columns 79

Choosing columns
You can choose columns you wish to keep with the following steps:

1.	 Click on Choose Columns:

Figure 3.11 – Choose Columns button

2.	 A view where you can choose the columns you want to keep will appear:

Figure 3.12 – Choose Columns window

80 Data Exploration in Power Query

3.	 Remove the flag from (Select All Columns), type Sales in the search bar, and flag
(Select All Search Results):

Figure 3.13 – Choose Columns selection

4.	 Repeat the same step by selecting all columns containing Date in their name and
click on OK; you will end up having 10 columns instead of 27.

The Choose Columns section is also aimed at browsing tables more quickly and
finding the column you want to transform or enrich. If you click on Go to Column,
a relative window pops up whereby you can change which column you end up
selecting:

Figure 3.14 – Go to Column

While the Choose Columns step allows you to add a Power Query step and transforms
your query, the Go to Column step is just a UI function for easy navigation and does not
result in a query step.

Managing columns 81

Removing columns
You can also decide to do this the other way around and not choose columns to keep, but
rather delete columns by completing the following steps:

1.	 Select the first three columns by pressing the Ctrl button and clicking on each in
order to get the following view:

Figure 3.15 – Column selection

2.	 Expand the Remove Columns button and click on Remove Columns to remove the
selected columns:

Figure 3.16 – Remove Columns button

If you had clicked on Remove Other Columns, you would have kept the selected columns
and instead removed the others.

These flexible actions are useful because they allow you to choose how to remove
unnecessary data and optimize the data preparation process. Useless and redundant data
tends to slow down the entire data transformation pipeline, and it is better to discard
everything that is not useful and strategic for data analysis.

82 Data Exploration in Power Query

Remember that you can always go back and modify the Remove Columns step in the
Apply Steps pane. In fact, Choose Columns decides by itself whether selecting or
removing (other) columns is the most efficient action.

Using data profiling tools
You may deal with great amounts of data and need tools that allow you to quickly check
data quality and distribution and get insights from columns' profiles.

Power Query offers an intuitive way of exploring data to identify bad data. Data profiling
is especially convenient when you are working with large volumes of data and you want to
quickly visualize the composition of that data.

Getting ready
For this recipe, you need to download the FactInternetSales2 CSV file into your
local folder.

In this example, we will refer to the C:\Data folder.

How to do it…
Once you have opened your Power BI Desktop application, you are ready to perform the
following steps:

1.	 Click on Get Data and select the Text/CSV connector.
2.	 Browse to your local folder where you downloaded the FactInternetSales2

CSV file and open it. A window with a preview of the data will pop up; click on
Transform data.

3.	 Browse the query ribbon and click on View:

Figure 3.17 – View tab

Using data profiling tools 83

4.	 Flag Column quality and observe the results:

Figure 3.18 – Column quality
This view shows three categorizations that define the content of the column in terms
of quality, expressed in percentages:

•	 Valid: The percentage of valid data according to column data type

•	 Error: The percentage of rows with errors

•	 Empty: The percentage of empty rows

This information is based on the top 1000 rows, as you can observe at the bottom of
the Power Query UI:

Figure 3.19 – Profiling based on the top 1000 rows

84 Data Exploration in Power Query

5.	 Click on Column profiling based on top 1000 rows and select Column profiling
based on entire data set:

Figure 3.20 – Profiling based on entire dataset

6.	 Now, observe the new values under the column names:

Figure 3.21 – Column quality on entire dataset
You will see different values from the ones based on the preview data. It is always
important to check and not rely exclusively on the data quality profiled on the top
1000 rows.

7.	 Next, using your cursor, hover under the ProductKey column and see that a
tooltip will appear:

Figure 3.22 – Tooltip on column quality

Using data profiling tools 85

You can see that there is a value that is compromising the column quality. In order
to manage this error, we have to perform a set of actions. You could directly click
on Remove Errors and remove the row affected by that error, but in this way, you
could lose relevant information.

8.	 Click on the three dots (…) and click on Keep Errors:

Figure 3.23 – Keep Errors

9.	 In this way, you will be able to filter to see the rows affected by errors:

Figure 3.24 – Rows affected by errors

86 Data Exploration in Power Query

10.	 Click on the value contained in the ProductKey column, and you will see the
value that is causing the error:

Figure 3.25 – Error in data quality
You will see that the error was caused by a numeric value contaminated by a letter,
and this error comes from the data source. It is possible to fix this at the Power
Query level without changing the value on the data source, but by having a correct
value for reporting purposes.

11.	 In order to fix this value, you can go back to the previous view with all data by deleting
the Kept Errors and ProductKey steps from the APPLIED STEPS pane:

Figure 3.26 – Deleting applied steps

12.	 Select the ProductKey column, right-click on it, and click on Replace Errors…:

Figure 3.27 – Replace Errors

Using data profiling tools 87

13.	 Enter the value 480 in order to replace the error that we know to be 480b, as
retrieved from previous steps:

Figure 3.28 – Replace Errors window

14.	 After this replacement is applied, you can see that now, from a data quality point of
view, the column has no errors:

Figure 3.29 – Column quality

Next, we will focus on the Column distribution feature that provides additional
information to the Column quality feature.

In order to see how this tool works, follow the next steps:

1.	 Browse the query ribbon, click on View, and flag Column distribution:

Figure 3.30 – Column distribution flagged

88 Data Exploration in Power Query

2.	 You will see a section that shows a number of distinct and unique values in a
column and a visualization showing the distribution of these values:

Figure 3.31 – Column distribution section

3.	 If you hover with your cursor on the section we are considering, you can see details
on how many distinct and unique values that column has:

Figure 3.32 – Column distribution details

Using data profiling tools 89

Finally, we will focus on the Column profile feature. In order to see how to leverage this
tool, follow the next steps:

1.	 Browse the query ribbon, click on View, and flag Column profile:

Figure 3.33 – Column profile flagged

2.	 You will see a section appearing at the bottom of the UI, as follows:

Figure 3.34 – Column profile section

90 Data Exploration in Power Query

This section gives additional details on the columns' content. On the left, you can
see data other than that seen under Column quality and Column distribution,
such as NaN values, Min and Max, Average, Standard deviation, and a count of
even and odd numbers.

On the right, you can see a column chart with detailed values on data distribution.
3.	 If you click on the three dots (…), you will see that you can choose different

grouping types according to the column's data type:

Figure 3.35 – Column distribution chart

4.	 If you hover with your cursor on the chart, a tooltip will appear with additional
information on that column's values; if you click on the three dots (…), you can apply
directly from here a set of transformations such as filtering data or replacing values:

Figure 3.36 – Column distribution tooltip details

Using Queries pane shortcuts 91

With this set of tools, a user can easily get relevant insights from queries with only a few
clicks. This is useful when you have to make corrections once you have identified errors
that cannot be quickly corrected at a data source level.

Using Queries pane shortcuts
The Power Query UI offers smooth data navigation. This recipe will help you to
understand how to use the Queries pane on the left of the UI. Other than basic query
navigation, it is possible to perform different actions by using some shortcuts.

Getting ready
For this recipe, you need to download the FactInternetSales CSV file into your
local folder.

In this example, we will refer to the C:\Data folder.

How to do it…
Once you open your Power BI Desktop application, you are ready to perform the
following steps:

1.	 Click on Get Data and select the Text/CSV connector.
2.	 Browse to your local folder where you downloaded the FactInternetSales

CSV file and open it. A window with a preview of the data will pop up; click on
Transform data.

3.	 Go to the Queries pane and right-click on the query:

Figure 3.37 – Queries pane shortcuts

92 Data Exploration in Power Query

4.	 From this view, you can carry out the following actions:

a) Copy and Paste queries.

b) Delete queries.

c) Rename queries.

d) �Enable load: This allows you to enable or disable a query to be loaded in
the model/dataflow.

e) �Include in report refresh: This allows you to include/exclude a query in
a model refresh.

f) Duplicate queries.

g) �Reference: This enables you to create a new query that uses the applied steps
from the query it is referencing. It does not duplicate a query, and every change
in the original query will be reflected in the one that is referencing it.

h) Move To Group: You can create groups and organize your queries in folders.

i) Move Up/Move Down queries.

j) Create Function: This allows to create functions on top of the selected query.

k) Convert to Parameter: This allows you to convert queries into parameters.

l) �Advanced Editor: From this shortcut, you can access the Advanced Editor view
of the selected query.

m) �Properties…: You can access a Properties section where you can rename
a query, add a description, and flag the properties you see in the following
screenshot:

Figure 3.38 – Queries properties

Using Query Settings pane shortcuts 93

Through the Queries pane, you can quickly perform some common tasks and organize
queries, especially when their number and complexity grow.

Using Query Settings pane shortcuts
One of the main benefits of Power Query is that every transformation is mapped and
traced in the APPLIED STEPS pane. This is part of the Query Settings section, where
you can see all the transformations and can perform some actions through a set of
shortcuts.

The aim of this recipe is to explore the Query Settings section and explore
possible activities.

Getting ready
For this recipe, you need to download the FactInternetSales CSV file into your
local folder.

In this example, we will refer to the C:\Data folder.

How to do it…
Once you open your Power BI Desktop application, you are ready to perform the
following steps:

1.	 Click on Get Data and select the Text/CSV connector.
2.	 Browse to your local folder where you downloaded the FactInternetSales

CSV file and open it. A window with a preview of the data will pop up; click on
Transform data.

94 Data Exploration in Power Query

3.	 Filter on the ProductKey column and select the values 310, 311, and 312:

Figure 3.39 – Filtering on ProductKey

4.	 Go to the Query Settings pane and observe the PROPERTIES and APPLIED
STEPS sub-sections:

Figure 3.40 – Query Settings pane

Using Query Settings pane shortcuts 95

5.	 From the PROPERTIES sub-section, you can rename your query, and if you click
on All Properties, the following window will pop up:

Figure 3.41 – Query Properties window
As already seen in the Using Queries pane shortcuts recipe, in this view you can
rename a query, enter a query description, and flag/unflag some additional properties.

6.	 Focus now on the APPLIED STEPS sub-section, and right-click on the Filtered
Rows step:

Figure 3.42 – APPLIED STEPS shortcuts

96 Data Exploration in Power Query

7.	 From this view, you can carry out the following actions:

a) Edit Settings: Make changes within a step.

b) Rename a step by giving it a more explicit or intelligible name.

c) Delete a step.

d) �Delete Until End: Delete all steps until the end, including the one selected.
An intermediate window will appear, asking if you are sure you want to perform
this action.

e) Insert Step After the step you have selected.

f) �Move before/Move after the step selected. You can achieve the same by dragging
and dropping the step you want to move.

g) �Extract Previous queries if you want to transfer a set of transformations to a new
query. When you click on this, a window will appear, where you will be required
to name the new query.

h) �View Native Query: When clickable, you can see the query statements that are
running against your data source.

i) �Diagnose: You can click this to run a detailed analysis for that particular step and
get diagnostics insights.

j) �Properties…: A window will pop up where you can rename a step and add
a description.

Using Schema view and Diagram view
You often need to visualize tables and columns focusing on a data schema and with the
aim of performing transformations at a metadata level. Using the traditional Power Query
view may end up being slower because the calculations are performed for all displayed
rows, both the preview or the entire dataset. Another need is related to having a visual way
to transform data whereby it is easier to understand the data preparation flow.

This recipe aims to show how to leverage the recently introduced Schema view and
Diagram view available in Power Query Online.

Getting ready
For this recipe, you need to have access to the Power BI service and to have an
existing workspace.

Using Schema view and Diagram view 97

You need also to connect to an Azure SQL database with AdventureWorks data. You
need to have access to a running database.

How to do it…
After you log in to the Power BI portal, perform the following steps:

1.	 Browse to your workspace, click on New, and click on Dataflow:

Figure 3.43 – Creating a dataflow

2.	 Click on Add new tables:

Figure 3.44 – Add new tables button

98 Data Exploration in Power Query

3.	 Search for Azure SQL database and click on the connector:

Figure 3.45 – Azure SQL database connector

4.	 Enter the server and database name and authentication details:

Figure 3.46 – Azure SQL database details

Using Schema view and Diagram view 99

5.	 Select the DimGeography and FactInternetSales tables and click on
Transform data:

Figure 3.47 – Data preview

6.	 Browse to the View tab and click on Schema view:

Figure 3.48 – Schema view button

100 Data Exploration in Power Query

7.	 Data information will be viewed in the following mode:

Figure 3.49 – Schema view

Using Schema view and Diagram view 101

8.	 Activities that you can perform thanks to Schema view include the following:

a) Reordering columns with drag and drop:

Figure 3.50 – Reordering a column in Schema view
b) Applying a transformation listed on the Schema tools tab:

Figure 3.51 – Schema tools tab

102 Data Exploration in Power Query

As you can see, you can perform varied tasks such as choosing or removing columns,
changing data types, marking a column as a key, duplicating, and renaming. You can also
use other transformations available in other tabs. You can always go back to Data view by
closing Schema view.

In general, this view is useful when you want to speed up some transformation and focus
only on metadata. Once you close Schema view, you will apply the steps together, which
ends up being more efficient.

You can also use a visual method to apply transformations to your data and leverage
a feature available in Power Query Online: Diagram view.

Let's see how you can use this feature by following the next steps:

1.	 Once you have closed Schema view from the previous example, let's open Diagram
view. Browse to the View tab and click on Diagram view:

Figure 3.52 – Diagram view button

2.	 Once you have turned to Diagram view, you will see that each query is defined by
a block, as illustrated in the following screenshot. You can also see a table preview:

Figure 3.53 – Diagram view queries

Using Schema view and Diagram view 103

You can click on the Expand icon and visualize steps applied to each query:

Figure 3.54 – Expand option in DimGeography

3.	 After you have expanded the query, you can click on the plus (+) icon and navigate
and choose the transformation step you want to perform:

Figure 3.55 – Adding a new step in Diagram view

104 Data Exploration in Power Query

4.	 Click on Choose columns (the first option you see), select columns as shown in the
following screenshot, and click on OK:

Figure 3.56 – Choosing columns

5.	 Add another step by clicking on the plus (+) icon and select Merge queries as new:

Figure 3.57 – Merge queries as new

Using Schema view and Diagram view 105

6.	 Select the SalesTerritoryKey column from DimGeography as Left table for
merge and from FactInternetSales as Right table for merge. Then, select
Left outer in the Join kind field and click on OK:

Figure 3.58 – Merge queries window

106 Data Exploration in Power Query

7.	 Click on Highlight related queries and see how queries involved with the Merge
operation are highlighted:

Figure 3.59 – Merging in Diagram view

In general, Diagram view is useful for understanding the flow of data, seeing quickly how
queries, parameters, and lists are related to each other, and easily expanding details for
every step.

4
Reshaping Your Data
When data grows in size and complexity, you need tools that allow you to make sense of
your data and create views that can be relevant for reporting and presenting that data.
In order to do this, they need features and options to reshape their data properly and to
clean it if needed, especially when you can't edit data sources directly. Often, they connect
to data that does not have a correct schema or a correct column name and they need to
group and change how data is displayed.

In the recipes in this chapter, you will see how to leverage Power Query's built-in features
that will allow you to reshape your data, to change its structure, and to adapt it to your
reporting needs.

In this chapter, we will cover the following recipes:

•	 Formatting data types

•	 Using first rows as headers

•	 Grouping data

•	 Unpivoting and pivoting columns

•	 Filling empty rows

•	 Splitting columns

•	 Extracting data

108 Reshaping Your Data

•	 Parsing JSON or XML

•	 Exploring artificial intelligence insights

Technical requirements
For this chapter, you will be using the following:

•	 Power BI Desktop: https://www.microsoft.com/en-us/download/
details.aspx?id=58494

•	 Power BI Premium capacity or a Premium Per User license

The minimum requirements for installation are as follows:

•	 .NET Framework 4.6 (Gateway release August 2019 and earlier)

•	 .NET Framework 4.7.2 (Gateway release September 2019 and later)

•	 A 64-bit version of Windows 8 or a 64-bit version of Windows Server 2012 R2 with
current TLS 1.2 and cipher suites

•	 4 GB disk space for performance monitoring logs

You can find the data resources referred to in this chapter at https://github.com/
PacktPublishing/Power-Query-Cookbook/tree/main/Chapter04.

Formatting data types
Data analysts and business intelligence users generally don't have editing permissions
on data sources. You can't change data types directly on the database. Asking for custom
changes may require time and it can be complex. In this sense, Power Query becomes a
powerful tool because it helps you define and customize data types. In this recipe, we will
see different options on how to change data types of specific columns or of entire tables.

Getting ready
For this recipe, you need to have Power BI Desktop running on your machine. You need
to download the following files in a local folder:

•	 FactResellerSales CSV file

•	 FactInternetSales CSV file

In this example, we will refer to the C:\Data folder.

https://www.microsoft.com/en-us/download/details.aspx?id=58494
https://www.microsoft.com/en-us/download/details.aspx?id=58494
https://github.com/PacktPublishing/Power-Query-Cookbook/tree/main/Chapter04
https://github.com/PacktPublishing/Power-Query-Cookbook/tree/main/Chapter04

Formatting data types 109

How to do it
Once you open your Power BI Desktop application, you are ready to perform the
following steps:

1.	 Click on Get data and select the Text/CSV connector:

Figure 4.1 – Text/CSV connector

110 Reshaping Your Data

2.	 Browse to your local folder where you downloaded the FactInternetSales
CSV file and open it. The following window with a preview of the data will pop up.
Click on Transform Data:

Figure 4.2 – CSV data preview

3.	 The usual Power Query interface will appear with data displayed. Focus on the
APPLIED STEPS pane and see that two steps were applied automatically:

a) Promoted Headers: The first row of the file is promoted as the columns' header.

b) �Changed Type: For unstructured data sources such as CSV/TXT, this step is
applied by default where Power Query detects the most adequate data type:

Formatting data types 111

Figure 4.3 – Changed data type step
If you focus on the selected column, ProductKey, you can see that the data type is
displayed on the left of the column name as shown in the following screenshot:

Figure 4.4 – Data type

4.	 If you click on the data type icon, a wider selection of data types will expand:

Figure 4.5 – Data type selection

112 Reshaping Your Data

Click on Text in order to convert this column type from Whole Number to Text.

5.	 The Change Column Type window will pop up because we added a change type to
the one generated by default:

Figure 4.6 – Change Column Type

You have different options to change data types for one or more columns:

•	 Replace current: You can replace the current step with the one defined in the
previous section. You will cancel the data type detection performed by Power Query
when you loaded the data and apply the step you defined for that single column.
You will then have to define other columns' data types.

•	 Add new step: You can add a new step and keep the one defined automatically.

In this case, we will select the last one in order to keep the data types detected by the
Changed Type step. Click on Add new step. This happens because when you are loading
date/time values from a text file and you want to convert to date, Power Query will not do
that directly; you have to first change from text to date/time (which is done automatically
by data type detection) and as a new step, convert to date.

Formatting data types 113

Now let's see another example that shows how to manipulate and change data types as
follows:

1.	 Click on File, Options and settings, and then on Options:

Figure 4.7 – Options

114 Reshaping Your Data

2.	 Focus on the Data Load tab and on the Type Detection section. You can disable or
enable the automatic data type detection from this window. Flag the third option to
disable the automatic detection as shown in the following screenshot and then click
on OK:

Figure 4.8 – Data type detection setting

3.	 Click on Get Data and select the Text/CSV connector.

4.	 Browse to your local folder where you downloaded the FactResellerSales
CSV file, open it, and click on OK.

5.	 You will see that in the Power Query interface, you won't see automatic applied
steps because we disabled automatic data type detection:

Figure 4.9 – Table preview

6.	 Browse to the Transform tab and click on Use First Row as Headers:

Formatting data types 115

Figure 4.10 – Use First Row as Headers

7.	 Then select all columns and click on Detect Data Type:

Figure 4.11 – Detect Data Type

8.	 You will see that data types were detected:

Figure 4.12 – Data types detected

116 Reshaping Your Data

9.	 You will see that some values were not detected correctly because number values
were detected as text:

Figure 4.13 – Data types not detected correctly

10.	 Select the columns you see in the preceding screenshot: ProductStandardCost,
TotalProductCost, SalesAmount, TaxAmt, and Freight. Right-click on
one of the column names, click on Change Type, and then click on Using Locale…
as you can see in the following screenshot:

Figure 4.14 – Using Locale data type

Formatting data types 117

11.	 A window will pop up where you can define local number formats. This feature
is useful when you have to deal with the decimal separator, which has different
formats according to the country settings set on the machine or at the tool level.
Select Fixed decimal number as Data Type and Locale as English (Germany)
since we want to use a comma as decimal separator, and click on OK:

Figure 4.15 – Define data type locale

12.	 Observe how the selected columns now show the correct data types:

Figure 4.16 – Data types corrected

There are different options on how to define data types. You can rely on automatic
detection; you can customize each column and deal with customized formats. This
flexibility can be achieved at the table or at column level by selecting single or subsets
of columns.

118 Reshaping Your Data

Using first rows as headers
When working with unstructured data, there is no data structure defined and the schema
has to be determined at the Power Query level. In the previous recipe, we saw how data
type is detected, while in this one we will see how you can define columns' headers.

Getting ready
In this recipe, you need to download the following file in a local folder:

•	 FactResellerSales2 CSV file

In this example, we will refer to the C:\Data folder.

How to do it
Once you open your Power BI Desktop application, you are ready to perform the
following steps:

1.	 Click on Get Data and select the Text/CSV connector.

2.	 Browse to your local folder where you downloaded the FactResellerSales2
CSV file and open it. A window with a preview of the data will pop up; click on
Transform Data.

3.	 The usual Power Query window will pop up and it is easy to note that this data
needs to be cleaned because we do not have headers and the first row contains data
not useful for any kind of analysis, as seen in the following screenshot:

Figure 4.17 – Power Query data interface

Using first rows as headers 119

4.	 Click on Remove Rows and then on Remove Top Rows. In the Remove Top Rows
window, insert 1 to remove the row we don't need and click on OK:

Figure 4.18 – Remove Top Rows

5.	 Now click on Use First Row as Headers:

Figure 4.19 – Use First Rows as Headers

120 Reshaping Your Data

6.	 You can see that now we have a defined schema with correct column headers:

Figure 4.20 – Cleaned data

When promoting rows to column headers, you will see that a Changed Type1 step is
applied automatically.

Grouping data
We connect to a wide variety of data and usually connect to data with high levels of detail
that it may not need for reporting. Instead of loading all data, we can define relevant
aggregations and group data according to custom logic at the Power Query level. In this
recipe, we will see how to define grouping logic and how to aggregate data easily.

Getting ready
For this recipe, you need to have Power BI Desktop running on your machine. You need
to download the following file in a local folder:

•	 FactInternetSales CSV file

In this example, we will refer to the C:\Data folder.

Grouping data 121

How to do it
Once you open your Power BI Desktop application, you are ready to perform the
following steps:

1.	 Click on Get Data and select the Text/CSV connector.

2.	 Browse to your local folder where you downloaded the FactInternetSales
CSV file and open it. A window with a preview of the data will pop up. Click on
Transform Data.

3.	 Browse to the Transform tab and click on Group By:

Figure 4.21 – Group By

4.	 Flag Basic and select the ProductKey column. In New column name, type
SalesAmount, define Sum as Operation and SalesAmount as the Column on
which to perform the sum, and click OK:

Figure 4.22 – Group By Basic

122 Reshaping Your Data

5.	 You can observe how the aggregation was performed by summing SalesAmount
for each ProductKey:

Figure 4.23 – Group By output

This is a simple aggregation based on one column, but this feature allows you to apply
advanced grouping logic, as shown in the following steps:

1.	 Double-click on the Grouped Rows step in order to open the Group By window
and edit the step we defined previously:

Figure 4.24 – Grouped Rows step

2.	 Flag Advanced and enter the information as seen in the following screenshot:

Grouping data 123

Figure 4.25 – Group By Advanced

3.	 You can see that we defined an advanced grouping logic that aggregates data by
ProductKey and TerritoryKey.

You have many possibilities on how to aggregate data. You can perform different
built-in calculations, for example:

Figure 4.26 – Group By calculations

124 Reshaping Your Data

By leveraging these options, it is easy to simplify data structure and build aggregation
tables ready to be used for the next steps.

Unpivoting and pivoting columns
You may need to change how data is displayed and turn a selected row into a column or
vice versa. You may also need to create a new matrix view that can be easily used while
developing reporting and custom views on data. In this recipe, we will see how to leverage
pivot and unpivot features that allow us to respectively turn rows to columns or to
transform columns into rows.

Getting ready
For this recipe, you need to have Power BI Desktop running on your machine. You need
to download the following file in a local folder:

•	 FactInternetSales CSV file

In this example, we will refer to the C:\Data folder.

How to do it
Once you open your Power BI Desktop application, you are ready to perform the
following steps:

1.	 Click on Get Data and select the Text/CSV connector.

2.	 Browse to your local folder where you downloaded the FactInternetSales
CSV file and open it. A window with a preview of the data will pop up; click on
Transform Data.

3.	 Click on Choose Columns to restrict the number of columns we are working with:

Figure 4.27 – Choose Columns

Unpivoting and pivoting columns 125

4.	 Select the ProductKey, TotalProductCost, SalesAmount, and TaxAmt
columns and click on OK.

5.	 Select the TotalProductCost, SalesAmount, and TaxAmt columns by
pressing Ctrl on your keyboard and clicking on the columns, browse to the
Transform tab, and click on Unpivot Columns and then on Unpivot Only Selected
Columns:

Figure 4.28 – Unpivot Columns

6.	 You can see that two columns were produced:

a) Attribute: A column with information contained before in headers

b) Value: Values that were under the previous column headers

In the following screenshot, you can see the two new added columns and the steps
applied:

Figure 4.29 – Unpivoted values

126 Reshaping Your Data

We also have the possibility to perform the opposite. We can transform columns into rows
as in the following example:

1.	 Remove the Unpivoted Only Selected Columns step from the APPLIED STEPS
pane:

Figure 4.30 – Remove step

2.	 Double-click on Removed Other Columns and select the ProductKey,
SalesAmount, and OrderDate columns:

Figure 4.31 – Column selection

Unpivoting and pivoting columns 127

3.	 Change type to Date for the OrderDate column:

Figure 4.32 – Change data type

4.	 Select the OrderDate column, then click on Pivot Column:

Figure 4.33 – Pivot OrderDate table

128 Reshaping Your Data

5.	 The Pivot Column window will pop up. Set Values Column as SalesAmount and
Aggregated Value Function as Sum, and click on OK:

Figure 4.34 – Pivot Column window

6.	 You can observe how the values from the previously selected column are now
column headers and the SalesAmount column values are now summed according
to a by date logic:

Figure 4.35 – Pivoted values

Filling empty rows 129

You have different options on how to aggregate data when doing the pivot
transformation, as follows:

Figure 4.36 – Pivot options

For values that can't be aggregated, there is also a Don't Aggregate option.

In general, you can test the unpivot and pivot features and see what logic best suits your
data cleaning needs.

Filling empty rows
Data sources can have their own specific structure on how data is shown. This may end up
with having null values displayed on the table once this is imported into Power Query. In
the following section, we will see an example that shows how you can fill missing data by
keeping the original data source logic.

Getting ready
In this recipe, you need to download the following file in a local folder:

•	 FactInternetSales2 CSV file

In this example, we will refer to the C:\Data folder.

130 Reshaping Your Data

How to do it
Once you open your Power BI Desktop application, you are ready to perform the
following steps:

1.	 Click on Get Data and select the Text/CSV connector.

2.	 Browse to your local folder where you downloaded the FactInternetSales2
CSV file and open it. A window with a preview of the data will pop up; click on
Transform Data.

3.	 You can see how at OrderDate column level, there are some missing values:

Figure 4.37 – Missing values

4.	 Select the OrderDate column, browse to the Transform tab, click on Fill, and
then on Down:

Filling empty rows 131

Figure 4.38 – Fill down option

5.	 You can see how there are no more null values, and they were filled according to
existing dates:

Figure 4.39 – Filled values

The alternative is to fill up, if the logic behind your data requires it. In this way, you can
correct your datasets in order to prepare yourself for the next use.

132 Reshaping Your Data

Splitting columns
Often, different information is merged into one column and we need to define rules to
split columns and separate the information. This recipe shows how you can split data by
defining custom logic according to requirements.

Getting ready
For this recipe, you need to have Power BI Desktop running on your machine. You need
to download the following file in a local folder:

•	 FactInternetSales CSV file

In this example, we will refer to the C:\Data folder.

How to do it
Once you open your Power BI Desktop application, you are ready to perform the
following steps:

1.	 Click on Get Data and select the Text/CSV connector.

2.	 Browse to your local folder where you downloaded the FactInternetSales
CSV file and open it. A window with a preview of the data will pop up; click on
Transform Data.

3.	 Browse to the OrderDate column and select it. Browse then to the Transform
tab, click on Split Column, and then on By Delimiter as shown in the following
screenshot:

Figure 4.40 – Split columns by delimiter

Splitting columns 133

4.	 The Split Column by Delimiter window will appear. Select Space as the delimiter
from the drop-down list, flag Each occurrence of the delimiter, expand Advanced
options, flag Columns, check that 2 is the number of columns, and then
click on OK:

Figure 4.41 – Split Column by Delimiter

134 Reshaping Your Data

5.	 You will see that you end up with two columns, one with date values and the other
with time values:

Figure 4.42 – Split columns output

There are other criteria to split columns. One of them is to split columns by the number of
characters. Follow the next example to see how it works:

1.	 Go to the SalesOrderNumber column, click on Split Column, and then on By
Number of Characters:

Splitting columns 135

Figure 4.43 – Split Column

2.	 The Split Column by Number of Characters window will pop up. Enter 2 as
Number of characters, flag Once, as far left as possible, expand Advanced
options, flag Columns, and click on OK:

Figure 4.44 – Split Column by Number of Characters

136 Reshaping Your Data

The idea is to split the value SO from the numeric value 43697 (if we consider the
values of the first row).

3.	 You will observe two new columns as the output of the splitting:

Figure 4.45 – Split Column output

Other methods to split columns include the following:

•	 By positions

•	 By lowercase to uppercase

•	 By uppercase to lowercase

•	 By digit to non-digit

•	 By non-digit to digit

You can define custom logic on how to split the data and leverage the main benefit on the
Power Query side, which is to apply this step also to new appended data when refreshing
the data source without the need to make this transformation at the data source level.

Extracting data
Similar to the previous recipe, you can extract subsets of data and information from
columns in this recipe. In this recipe, we will see how we can easily extract information
such as length, a selection of characters, or a range of data within the column. The idea is
to show you how easy it is to perform these transformations quickly and intuitively.

Extracting data 137

Getting ready
For this recipe, you need to have Power BI Desktop running on your machine. You need
to download the following file in a local folder:

•	 FactInternetSales CSV file

In this example, we will refer to the C:\Data folder.

How to do it
Once you open your Power BI Desktop application, you are ready to perform the
following steps:

1.	 Click on Get Data and select the Text/CSV connector.

2.	 Browse to your local folder where you downloaded the FactInternetSales
CSV file and open it. A window with a preview of the data will pop up. Click on
Transform Data.

3.	 Browse to the Transform tab, click on Extract, and click on Last Characters:

Figure 4.46 – Extract

138 Reshaping Your Data

4.	 The Extract Last Characters window will pop up, where you can enter how many
characters to extract, starting from the last. In this case, enter 5 in order to extract
the characters containing numbers and click on OK:

Figure 4.47 – Extract Last Characters

5.	 As an output, you will see that the same column was transformed:

Figure 4.48 – Extract output

Parsing JSON or XML 139

Other information that can be extracted is as follows:

•	 Length of characters

•	 Defined ranges

•	 Text before/after delimiters

•	 Text between delimiters

In this way, we can keep only relevant information and rename columns with a more
suitable name.

Parsing JSON or XML
We may sometimes find mixed data structures within the same query. In this recipe,
we will see how to deal with mixed data structures when single columns within a table
contain JSON data structure. The same reasoning would apply to XML structure too.

Getting ready
For this recipe, you need to have Power BI Desktop running on your machine. You need
to download the following file in a local folder:

•	 InternetSales CSV file

In this example, we will refer to the C:\Data folder.

140 Reshaping Your Data

How to do it
Once you open your Power BI Desktop application, you are ready to perform the
following steps:

1.	 Click on Get Data and select the Text/CSV connector.

2.	 Browse to your local folder where you downloaded the InternetSales CSV file
and open it. The following window with a preview of the data will pop up. Click on
Transform Data:

Figure 4.49 – CSV data preview

Parsing JSON or XML 141

3.	 Browse to the Home tab and click on Use First Row as Headers and observe the
data structure as follows:

a) ID column

b) �SalesData column containing a JSON data structure with information on sales
transactions

You will see the two columns displayed as in the following screenshot:

Figure 4.50 – Mixed data structure

4.	 Select the SalesData column, browse to the Transform tab, click on Parse, and
then on JSON:

Figure 4.51 – Parse JSON

142 Reshaping Your Data

5.	 You will see that instead of the column with JSON data, you now have a list of
records that you can expand. You can visualize and select the values that were
parsed from the JSON file:

Figure 4.52 – Manage parsed data

6.	 Select all data and click on OK:

Figure 4.53 – Expanded parsed data

Exploring artificial intelligence insights 143

You can see how, with a few easy steps, you can manipulate a data structure that would be
difficult to manage with other tools. This means that end users can push themselves to do
advanced data preparation without the need to request changes at data source level.

The logic on JSON parsing applies to the XML structure as well.

Exploring artificial intelligence insights
Power Query allows us to enrich data with a data engineering approach. It also provides
us with artificial intelligence (AI) tools to access cognitive services, which are
pre-trained machine learning (ML)models provided by Microsoft, usually used by data
scientists and app developers to apply cognitive capabilities to reading and interpreting
data.

In this recipe, you will explore how to leverage these features in order to run, with a
no-code approach, consistent text analysis, thanks to the use of cognitive services.

Getting ready
For this recipe, you need to have Power BI Desktop running on your machine. You need
to download the following file in a local folder:

•	 IMDB-Dataset CSV file with movie reviews data

In this example, we will refer to the C:\Data folder.

In order to access cognitive services resources, you need to have a running Power BI
Premium capacity.

144 Reshaping Your Data

How to do it
Once you open your Power BI Desktop application, you are ready to perform the
following steps:

1.	 Click on Get Data and select the Text/CSV connector.

2.	 Browse to your local folder where you downloaded the IMDB-Dataset CSV file
and open it. The following window with a preview of the data will pop up. Click on
Transform Data:

Figure 4.54 – CSV data preview

Exploring artificial intelligence insights 145

3.	 Browse to the Home tab and click on Use First Rows as Headers. Select the first
column, review, where you can find movie reviews, browse to the Add Column
tab, and click on Text Analytics in order to see the following window displayed:

Figure 4.55 – Detect language
Now, click on Detect language, select the review column and click on OK. This
way, you will be applying the text analytics function to detect the language type of
the selected column.

4.	 You will see two new columns, Detect language.Detected Language
Name and Detect language.Detected Language ISO Code, with
information about the language detected:

Figure 4.56 – Detect language output

146 Reshaping Your Data

5.	 Click again on Text Analytics and click now on Extract key phrases:

Figure 4.57 – Extract key phrases

6.	 You can see the following two columns with key words for every single review:

Figure 4.58 – Extract key phrases output

Exploring artificial intelligence insights 147

As well as text analytics services, you can also do analysis on images using vision services.
If you have a column with links redirecting to images, you can enrich that content by
applying image tags.

Moreover, you can recall custom machine learning models developed on Azure Machine
Learning by data scientists. The idea is to have Power Query features that allow business
users and analysts to collaborate with more technical users, such as data engineers and
data scientists.

Artificial intelligence insights can be seen as the entry point to recall pre-calculated
artificial intelligence services such as cognitive services and custom ML models developed
on Azure Machine Learning.

5
Combining Queries

for Efficiency
Business analysts need to perform complex transformations that usually involve
a combination of multiple queries. They often need to join data horizontally or
to append tables.

With different ways of combining data, you can transform and model tables in order to
optimize the information included. By leveraging different methods, you can perform
merge and join transformations in order to enrich data or append and combine queries
to scale and increase data volume automatically. The main aim is to create queries with
relevant data that can serve different purposes, such as reporting, loading to Dataverse
through Power Apps, or loading to Azure Data Lake to make this data available for
other applications.

In this chapter, you will explore the following combining options within Power Query:

•	 Merging queries

•	 Joining methods

•	 Appending queries

•	 Combining multiple files

•	 Using the Query Dependencies view

150 Combining Queries for Efficiency

Technical requirements
For this chapter, you will be using Power BI Desktop (https://www.microsoft.
com/en-us/download/details.aspx?id=58494).

The minimum requirements for installation are listed here:

•	 .NET Framework 4.6 (Gateway release August 2019 and earlier)

•	 .NET Framework 4.7.2 (Gateway release September 2019 and later)

•	 A 64-bit version of Windows 8 or a 64-bit version of Windows Server 2012 R2 with
current Transport Layer Security (TLS) 1.2 and cipher suites

•	 4 gigabytes (GB) disk space for performance monitoring logs

You can find the data resources referred to in this chapter at https://github.com/
PacktPublishing/Power-Query-Cookbook/tree/main/Chapter05.

Merging queries
Users usually need to merge data horizontally and enrich a table with additional columns
that are not available within the main query when it is loaded from a data source.

In this recipe, you will see how to perform this merging and which steps to consider in
order to get a successful result.

Getting ready
For this recipe, you need to download the following files:

•	 FactInternetSales CSV file

•	 DimTerritory CSV file

In this example, we will refer to the C:\Data folder.

https://www.microsoft.com/en-us/download/details.aspx?id=58494
https://www.microsoft.com/en-us/download/details.aspx?id=58494
https://github.com/PacktPublishing/Power-Query-Cookbook/tree/main/Chapter05
https://github.com/PacktPublishing/Power-Query-Cookbook/tree/main/Chapter05

Merging queries 151

How to do it…
Once you open your Power BI Desktop application, you are ready to perform the
following steps:

1.	 Click on Get Data and select the Text/CSV connector.
2.	 Browse to your local folder where you downloaded the FactInternetSales

CSV file and open it. The following window with a preview of the data will pop up;
click on Transform Data:

Figure 5.1 – CSV data preview

152 Combining Queries for Efficiency

3.	 Repeat these steps for the DimTerritory CSV file in order to end up with two
queries in the Power Query user interface (UI)—FactInternetSales and
DimTerritory:

Figure 5.2 – Power Query UI

4.	 In this case, we want to enrich the FactInternetSales table with some
columns coming from the DimTerritory table in order to get details of the
geographical location of sales transactions. For this, you need to browse to the
end of the Home tab and click on Combine and then Merge Queries:

Figure 5.3 – Merge Queries button

Merging queries 153

5.	 A Merge window will pop up. Select the SalesTerritoryKey column and
select the DimTerritory table from the drop-down menu, as shown in the
following screenshot:

Figure 5.4 – Merge window

154 Combining Queries for Efficiency

6.	 In the second table, select the SalesTerritoryKey column. Select Left Outer
(all from first, matching from second) for the Join Kind field. Leave the other
options as they are and click on OK:

Figure 5.5 – Merge window columns selected

7.	 After you click OK, you will see that a new column will be added to the
FactInternetSales query:

Figure 5.6 – New column added

Merging queries 155

8.	 Click on the Expand icon on the right of the DimTerritory column, select
SalesTerritoryRegion and SalesTerritoryCountry, and click on OK:

Figure 5.7 – New columns selection

9.	 You will see two new columns coming from the other query (DimTerritory),
matching the rows of the main table:

Figure 5.8 – Expanded columns

156 Combining Queries for Efficiency

You can see how this feature allows users to enrich and transform data coming from
different sources, without the need to make any change to the data source directly.

Joining methods
In the previous recipe, you had the chance to see how to perform a merge where you
reference a main table enriched with data coming from another table with geographical
details. In fact, there are many ways to join data on matching values following a logic
that belongs to traditional relational databases—for example, left/right/full outer joins,
inner joins, and left/right anti-joins. These different methods allow users to match data
by applying custom logic.

In this recipe, you will see how you can effectively leverage some of the most popular
joining methods.

Getting ready
For this recipe, you need to download the following files:

•	 FactInternetSales CSV file

•	 DimTerritory2 CSV file

In this example, we will refer to the C:\Data folder.

How to do it…
Once you open your Power BI Desktop application, you are ready to perform the
following steps:

1.	 Click on Get Data and select the Text/CSV connector.
2.	 Browse to your local folder where you downloaded the FactInternetSales

CSV file and open it. The following window with a preview of the data will pop up;
click on Transform Data:

Joining methods 157

Figure 5.9 – CSV data preview

158 Combining Queries for Efficiency

3.	 Repeat Steps 1 and 2 for the DimTerritory2 CSV file in order to end up with the
following two queries in the Power Query UI:

Figure 5.10 – Power Query UI

4.	 In this case, we want to enrich DimTerritory2 with aggregated data coming
from the FactInternetSales table by performing a right outer join. For this,
you need to select DimTerritory2 in the Queries pane, browse to the end of the
Home tab, and click on Merge Queries:

Joining methods 159

Figure 5.11 – Merge Queries button

5.	 Select SalesTerritoryKey from the DimTerritory2 query and
FactInternetSales from the drop-down menu, selecting the same matching
value. In the Join Kind field, select Right Outer (all from second, matching from
first) and click on OK:

Figure 5.12 – Merge window

160 Combining Queries for Efficiency

6.	 In the DimTerritory2 query, you can find a subset of three rows we had in the
original table (DimTerritory) from the previous recipe and a row with null
values. When merging with a right outer join, you enriched the DimTerritory2
table with both matching and non-matching values. Click on the Expand icon
on the left of the FactInternetSales column, flag Aggregate, select Sum of
TotalProductCost and Sum of SalesAmount, unflag Use original column name as
prefix, and click on OK:

Figure 5.13 – Expanding merged column

7.	 You can see two new columns containing data from the FactInternetSales
table:

Figure 5.14 – Added columns

Joining methods 161

You can see that in this way, you can add aggregated data and enrich tables with external
data. This is useful when you need both matching and non-matching data. In this recipe,
you added aggregated sales and total cost values for the geographies available in the
DimTerritory2 table, and you also added a row that does not have a match to represent
sales and total costs for geographies that are not mapped.

In the previous recipe, you saw how to enrich data coming from other queries. In some
cases, you may need to enrich data only on matching values, as you will see in the
following exercise.

If you double-click on the Merged Queries step on the APPLIED STEPS pane, you can
change and explore other join possibilities. Follow the next steps to see how:

1.	 Edit the Merge Queries step by double-clicking on it, wait for the Merge window to
appear, change Join Kind to Inner (only matching rows), and click on OK:

Figure 5.15 – Merge window

162 Combining Queries for Efficiency

2.	 You can see that in this way, we only added matching information:

Figure 5.16 – Inner join output

Let's add another query to test another join method, Left Anti:

1.	 Click on Get Data and select the Text/CSV connector.
2.	 Browse to your local folder where you downloaded the DimProduct CSV file and

open it. A preview of the data will pop up; click on Transform Data.
3.	 Select DimProduct from the Queries pane, browse to the Home tab, and click on

Merge queries.
4.	 Select ProductKey from the DimProduct query and FactInternetSales

from the drop-down menu, selecting the same matching value. In the Join Kind
field, select Left Anti (rows only in first) and click on OK:

Joining methods 163

Figure 5.17 – Merge window
The idea with this join kind is to have a dataset with all rows from the first table
less the matching rows from the second table. If the DimProduct table originally
has 404 rows, after this join it will have 53 fewer rows, which are the rows that are
matching from FactInternetSales.

164 Combining Queries for Efficiency

5.	 Click on the Expand icon on the left of the FactInternetSales column, flag
Expand, select ProductKey, and click on OK:

Figure 5.18 – Expanding merged column

6.	 You can see that the number of rows is reduced in the bottom left of the page:

Figure 5.19 – Updated number of rows

As we observed in this recipe, there are many ways to perform merge transformations,
and each allows us to get different outputs of data. You can enrich data, reduce it, retrieve
values for each row, or perform built-in aggregations. This step allows you to easily edit
update join transformations and tells you which data to expand.

Appending queries 165

Appending queries
Within a single table, you often need to have data coming from different files/tables. You
need to append data and have a unique view that will allow you to run more complex
analyses. In this recipe, you will see how you can append data in Power Query with just
a few clicks.

Getting ready
For this recipe, you need to download the following files:

•	 FactInternetSales CSV file
•	 FactResellerSales CSV file

In this example, we will refer to the C:\Data folder.

How to do it…
Once you open your Power BI Desktop application, you are ready to perform the
following steps:

1.	 Click on Get Data and select the Text/CSV connector.
2.	 Browse to your local folder where you downloaded the two CSV files

(FactInternetSales and FactResellerSales) and load them into the
Power Query view:

Figure 5.20 – Queries pane

166 Combining Queries for Efficiency

3.	 Select the FactInternetSales query, browse to the Add Column tab, and click
on Custom Column:

Figure 5.21 – Custom Column button

4.	 Create a new column called Channel, add as a formula the value Internet, and
click on OK:

Figure 5.22 – Custom Column window
Repeat this step for the FactResellerSales query, with the only difference being
on the value to define in the added column. Instead of Internet, enter Reseller:

Appending queries 167

Figure 5.23 – Custom Column window: Reseller
You should end up with an added column for each query, as shown in the
following screenshot:

Figure 5.24 – New added columns

168 Combining Queries for Efficiency

5.	 Browse to the Home tab and click on Append Queries as New:

Figure 5.25 – Append Queries as New button

6.	 Select FactInternetSales in the First table field and FactResellerSales
in the Second table field, and click on OK:

Figure 5.26 – Append window

7.	 You will end up with a query named Append1 (you can rename this as you
wish), with appended data from the two queries. In this case, some column
headers do not match between the two tables, such as CustomerKey from
FactInternetSales and ResellerKey from FactResellerSales.
In this case, the Append1 query will show null values:

Combining multiple files 169

Figure 5.27 – Null values for non-matching columns

You can append more than two tables and apply the same logic to a wider number
of queries.

Combining multiple files
While working with your data, you may need to automatically combine multiple files. You
could use the append transformation method, but if you imagine a use case where there
are files loaded into a folder with a defined frequency and you need to see the new data
coming at each refresh, it is clear that an alternative method is needed. In this recipe, you
will see how to connect and combine multiple files with just a few clicks, regardless of how
many there are in the folder.

170 Combining Queries for Efficiency

Getting ready
For this recipe, to test different types of file connectors, you need to download
a CSVFiles folder containing CSV files, as shown in the following screenshot:

Figure 5.28 – Local folder with CSV files

In this example, I will refer to the following path: C:\Data\CSVFiles.

How to do it…
Open the Power BI Desktop application to perform the following steps:

1.	 Go to Get Data, then click on the Folder connector. You can directly enter your
folder path or click on Browse and select the folder from the usual browsing section
of your machine. Then, click on OK.

2.	 You will see the following window with a list of files contained in the folder:

Combining multiple files 171

Figure 5.29 – How files from the folder are displayed

3.	 Click on Transform Data and you will see the following columns:

Figure 5.30 – List of files in Power Query view

172 Combining Queries for Efficiency

4.	 Click on the Combine icon, which you will find in the left corner of the Content
column, as shown in the following screenshot:

Figure 5.31 – Combine icon

5.	 The Combine Files window will pop up. From here, you can define which file to
use in the Sample File field and define the File Origin, Delimiter, and Data Type
Detection fields. Leave the detected values you see for each field and click on OK,
as seen in the following screenshot:

Figure 5.32 – Combine Files window

Using the Query Dependencies view 173

6.	 You can see that all data from all files is collected in one query:

Figure 5.33 – Combine Files output

With the Combine transformation method, there will be a set of transformations that are
automatically generated by the system. These include the definition of a sample file and
a function that iterates over all the files in the folder and then expands and appends them.

Users can customize this generated function and adapt it to their custom use cases. An
example will be explored in Chapter 8, Adding Value to Your Data.

Using the Query Dependencies view
Once you become confident using Power Query, you can start adding a higher number of
queries, combining them, and applying complex transformation logic. You can often get lost
in terms of how queries were built and merged and you may need a view that allows you to
map data sources and queries. In this recipe, we will see how the Query Dependencies view
will allow us to quickly see what is going on in that Power Query session.

Getting ready
In this recipe, you will need to connect to Azure SQL Database with AdventureWorks
data. You need to have access to a running database.

174 Combining Queries for Efficiency

How to do it…
Once you open Power BI Desktop, perform the following steps:

1.	 Go to Get data, click on More…, and browse for Azure SQL database:

Figure 5.34 – Azure SQL database

2.	 Enter the server name of your Azure SQL database:

Figure 5.35 – SQL Server information

Using the Query Dependencies view 175

3.	 Enter authentication details:

Figure 5.36 – Azure SQL database authentication

4.	 Flag DimGeography, FactInternetSales, and FactResellerSales, and
click on Transform Data:

Figure 5.37 – Table selection

176 Combining Queries for Efficiency

5.	 Select FactInternetSales, click on Choose Columns, type Dim in the search
bar, and unflag all columns:

Figure 5.38 – Unflagging Dim columns

6.	 Click on OK and repeat this step for the FactResellerSales query.

Select the FactResellerSales query and click on Append Queries as New:

Figure 5.39 – Append Queries as New button

Using the Query Dependencies view 177

7.	 Select FactInternetSales in the Second table field:

Figure 5.40 – Append Queries detail

8.	 Rename the newly created query as TotalSales:

Figure 5.41 – Query Settings properties

9.	 Browse to the View tab and click on Query Dependencies:

Figure 5.42 – Query Dependencies button

178 Combining Queries for Efficiency

A tree view will open up all queries in the current Power Query session in
a mapped format:

Figure 5.43 – Query Dependencies view

10.	 On the bottom right of the screen, click on Layout and click on Left to
Right Layout:

Using the Query Dependencies view 179

Figure 5.44 – Query Dependencies layout

11.	 A different layout of the view will be displayed, and in the same way, you can change
it according to your preferred view. This clearly depends on the complexity and
number of queries:

Figure 5.45 – Query Dependencies changed layout

180 Combining Queries for Efficiency

12.	 The dependency tree helps users to map all queries and their dependencies.
In this case, we can see how a new TotalSales query is generated by
FactInternetSales and FactResellerSales.

It is possible to use this view to view the overall Power Query design and understand
which data sources have been used and what is the level of the queries' complexity in
terms of dependency.

6
Optimizing Power

Query Performance
Once you become more confident with Power Query and are able to do the main
transformations and reshape your data, you are ready to focus on optimizing queries'
performance. This topic is important because when you prepare data for reporting or any
other further use and you need to refresh data or to retrieve subsets of filtered data, you
need to think about and design Power Query steps in a way that helps you to avoid slow
queries and suboptimal performance for end users. In this chapter, we will learn how to
use concepts such as parameters and query folding that can help you improve queries'
loading times.

In particular, you will explore the following performance optimization options within
Power Query:

•	 Setting up parameters

•	 Filtering with parameters

•	 Folding queries

•	 Leveraging incremental refresh and folding

•	 Disabling query load

182 Optimizing Power Query Performance

Technical requirements
For this chapter, you will be using the following:

•	 Power BI Desktop: https://www.microsoft.com/en-us/download/
details.aspx?id=58494

The minimum requirements for installation are the following:

•	 NET Framework 4.6 (Gateway release August 2019 and earlier)

•	 NET Framework 4.7.2 (Gateway release September 2019 and later)

•	 A 64-bit version of Windows 8 or a 64-bit version of Windows Server 2012 R2 with
current TLS 1.2 and cipher suites

•	 4 GB disk space for performance monitoring logs

You can find the data resources referred to in this chapter at https://github.com/
PacktPublishing/Power-Query-Cookbook/tree/main/Chapter06.

Setting up parameters
You have the possibility to manage in a flexible way which data to load in the model.
You can define parameters and use them in inputs for multiple transformations such as
filtering or enriching data. In this recipe, we will see how to define parameters and how to
use them when adding a conditional column based on some threshold values where you
want to add a flag for each value of an existing column.

Getting ready
For this recipe, you need to download the FactInternetSales CSV file.

In this example, we will refer to the C:\Data folder.

https://www.microsoft.com/en-us/download/details.aspx?id=58494
https://www.microsoft.com/en-us/download/details.aspx?id=58494
https://github.com/PacktPublishing/Power-Query-Cookbook/tree/main/Chapter06
https://github.com/PacktPublishing/Power-Query-Cookbook/tree/main/Chapter06

Setting up parameters 183

How to do it…
Once you open your Power BI Desktop application, you are ready to perform the
following steps:

1.	 Click on Get data and select the Text/CSV connector:

Figure 6.1 – Text/CSV connector

184 Optimizing Power Query Performance

2.	 Browse to your local folder where you downloaded the FactInternetSales
CSV file and open it. The following window with a preview of the data will pop up.
Click on Transform Data:

Figure 6.2 – CSV data preview

3.	 Browse to the Home tab and click on Manage Parameters:

Figure 6.3 – Manage Parameters button

Setting up parameters 185

4.	 Create two parameters, Parameter1 and Parameter2, and enter for each the
information seen in the following screenshots, and then click on OK:

Figure 6.4 – (Left) Parameter1 creation. (Right) Parameter2 creation

5.	 You will see that two new elements, Parameter1 (3000) and Parameter2 (3500), are
visible in the Power Query window in the Queries pane.

Figure 6.5 – Parameters in the Queries pane

186 Optimizing Power Query Performance

6.	 Now, select the FactInternetSales query (above Parameter 1 (3000)), browse
to the Add Column tab, and click on Conditional Column, as seen in the
following screenshot:

Figure 6.6 – Adding a conditional column

7.	 Create a conditional column, SalesLevel, and enter the values for each
condition, as shown in the following screenshot, and then click on OK:

Setting up parameters 187

Figure 6.7 – Add Conditional Column window
The conditional columns allow us to define three labels, High, Medium, or Low, for
each SalesAmount value depending on the values of the parameters we define.

8.	 You will see a new column in the FactInternetSales query, called
SalesLevel, with values that reflect different labels according to the value
contained in the SalesAmount column, as in the following screenshot:

Figure 6.8 – New added column

188 Optimizing Power Query Performance

9.	 Select Parameter2 and edit the value by entering 3350, and then press the Enter
button on your keyboard.

Figure 6.9 – Editing the parameter value

10.	 Select the FactInternetSales query and browse to the SalesLevel column
that you created in the previous steps. See how the labels have changed according to
the value of Parameter2.

Figure 6.10 – Updated labels

Parameters are useful because, as you saw in this example, they allow us to dynamically
change thresholds and to apply a transformation without the need for editing it manually
with static values, but rather adapting it with parameters.

Filtering with parameters 189

Filtering with parameters
Parameters are a key functionality when it comes to the definition of dynamic filtering
logic. You can create parameters that will be used to filter and load data according to
predefined values. This way, you will be able to work on a subset of data optimizing
general queries' performance.

In this recipe, you will see how to create a parameter over a key value, for example, a
product key.

Getting ready
For this recipe, you need to download the FactInternetSales CSV file.

In this example, we will refer to the C:\Data folder.

How to do it…
Once you open your Power BI Desktop application, you are ready to perform the
following steps:

1.	 Click on Get data and select the Text/CSV connector.

Figure 6.11 – Text/CSV connector

190 Optimizing Power Query Performance

2.	 Browse to your local folder where you downloaded the FactInternetSales.
csv file and open it. The following window with a preview of the data will pop up.
Click on Transform Data.

Figure 6.12 – CSV data preview

3.	 Browse to the Home tab and click on Manage Parameters.

Figure 6.13 – Manage Parameters button

Filtering with parameters 191

4.	 Create a parameter called ProductKey, select Decimal Number for Type
from the relative drop-down section, select List of values from the Suggested
Values dropdown, and enter the values 310, 346, and 336, as shown in the
following screenshot:

Figure 6.14 – Manage Parameters window

192 Optimizing Power Query Performance

5.	 Select the value 310 from the dropdowns for both Default Value and Current
Value and click on OK.

Figure 6.15 – Defining default and current values

6.	 Browse to the Queries pane, select the ProductKey (310) parameter, and observe
how you can select one of the three values you defined for that parameter, as shown
in the following screenshot:

Figure 6.16 – ProductKey parameter

Filtering with parameters 193

7.	 From the Queries pane, select the FactInternetSales query. Then, select the
ProductKey column from the query selected. Then, click on the drop-down icon
on the right part of the ProductKey column and click on Number Filters and
then Equals…, as shown in the following screenshot:

Figure 6.17 – Filtering the ProductKey column

194 Optimizing Power Query Performance

8.	 Click on the type of value you want to base your equality on (the default one is 1.2)
and select Parameter.

Figure 6.18 – Filter Rows window

9.	 ProductKey will be selected automatically since it is the only parameter in the
current session. After this, click on OK.

Figure 6.19 – Filtering with parameters

Filtering with parameters 195

10.	 You can see how the ProductKey column is filtered on the current value 310 that
we defined previously:

Figure 6.20 – Filtered column

11.	 Select the ProductKey (310) parameter on the Queries pane and change the value
of the parameter from the drop-down section by selecting 346.

Figure 6.21 – Selecting a parameter value

196 Optimizing Power Query Performance

12.	 Select the FactInternetSales query and observe how the filtered data changes.

Figure 6.22 – Filtered column

You can see how it is easy to dynamically apply filters with the use of parameters by
defining a list of values.

In this example, we used a list of three ProductKey values that we created manually, but
what if we want to retrieve this list from an external query?

You can do that by performing the following steps:

1.	 Go to the query settings on the right pane of the Power Query UI and delete the
Filtered Rows step.

Filtering with parameters 197

Figure 6.23 – Deleting the Filtered Rows step

2.	 Right-click on the ProductKey column and click on Add as New Query.

Figure 6.24 – Adding a column as a new query

198 Optimizing Power Query Performance

3.	 A list will be generated with unique columns containing ProductKey values.
Rename the query ProductKeyList.

Figure 6.25 – Renaming a list

4.	 Right-click on List and click on Remove Duplicates in order to have unique
values only.

Figure 6.26 – Remove Duplicates

Filtering with parameters 199

5.	 Browse to the Home tab and click on Manage Parameters.

Figure 6.27 – Manage Parameters button

6.	 Edit the ProductKey parameter by selecting Query from the drop-down section
of the Suggested Values field.

Figure 6.28 – Values from a query

200 Optimizing Power Query Performance

7.	 Then, select ProductKeyList from the drop-down section of the Query field and
click on OK to create the parameter.

Figure 6.29 – Selecting ProductKeyList for Query

8.	 From the Queries pane, select the FactInternetSales query. Then, select the
ProductKey column from the same query. Then, click on the drop-down icon on
the right part of the ProductKey column and click on Number Filters and then
Equals…, as shown in the following screenshot:

Filtering with parameters 201

Figure 6.30 – Filtering a column

9.	 Click on the type of value you want to base your equality on and select Parameter.

Figure 6.31 – Filter Rows window

202 Optimizing Power Query Performance

10.	 ProductKey will be selected automatically since it's the only parameter in the
current session. After this, click on OK.

Figure 6.32 – Using a parameter as a filter

11.	 Browse to the Home tab, click on the Manage Parameters dropdown, and then
click on Edit Parameters.

Figure 6.33 – Edit Parameters button

Folding queries 203

12.	 Click on the dropdown and observe how you can now choose among ProductKey
values from the list we extracted from the FactInternetSales query.

Figure 6.34 – Edit Parameters window

You can see how you can adapt parameters to different use cases. You can also create
multiple parameters and apply combinations of filters to the same query.

Folding queries
You often connect to relational sources, and it is important to know how to leverage query
folding in order to retrieve data from the sources with Power Query steps that act as a
single query statement. Query folding helps us to push more steps toward the origin data
source in order to reduce the number of steps processed by the Power Query engine.

In this recipe, you will see how to perform query folding and how to control it.

204 Optimizing Power Query Performance

Getting ready
In this recipe, you need to connect to an Azure SQL database that you can recreate in
your environment with the Adventureworks.bacpac file.

How to do it…
Once you open your Power BI Desktop application, you are ready to perform the
following steps:

1.	 Click on Get data and then More… to access the Get Data window and see the
complete list of connectors.

Figure 6.35 – Power BI connectors

Folding queries 205

2.	 Browse to the Azure SQL database connector, select it, and click on Connect.

Figure 6.36 – Azure SQL database connector

206 Optimizing Power Query Performance

3.	 Enter your server and database information, flag Import for Data Connectivity
mode, and then click on OK.

Figure 6.37 – SQL Server database information

4.	 Authenticate with your preferred authentication method. In this example, I'm using
the Microsoft account authentication.

Figure 6.38 – SQL Server database authentication

Folding queries 207

5.	 Select the FactInternetSales table from the database and click on
Transform Data.

Figure 6.39 – Selecting tables from a database

208 Optimizing Power Query Performance

6.	 Go to APPLIED STEPS and right-click on the Navigation step. You can see that
you are able to select View Native Query and this means that query folding is
now active:

Figure 6.40 – View Native Query

Folding queries 209

7.	 Select the ProductKey column, click on the filter dropdown, select the first four
values, as shown in the following screenshot, and click on OK:

Figure 6.41 – Filtering the ProductKey column

210 Optimizing Power Query Performance

8.	 Go to the APPLIED STEPS section in the right pane in the Power Query UI, right-
click on the Filtered Rows step, as in Step 6, and click on View Native Query. The
Native Query window will pop up, where you can see what the statement that is
executed against the data source is:

Figure 6.42 – Native query details

When you apply a filter, it is like you are applying a WHERE statement toward the database.
You can also select columns, group data, merge queries with JOIN statements, pivot and
unpivot, and achieve query folding. If you change the data type, you will see how query
folding will be disabled. Go through the following example:

1.	 Go to the OrderDateKey column, browse to the Transform tab, and click on
Split Column and By Number of Characters.

Folding queries 211

Figure 6.43 – Split Column button

2.	 Enter 4 for Number of characters, flag Once, as far left as possible, and click on OK.

Figure 6.44 – Split Column by Number of Characters

212 Optimizing Power Query Performance

3.	 Go to APPLIED STEPS and right-click on the Navigation step. You can see that
you can't select View Native Query and this means that you can't leverage query
folding, as shown in the following screenshot:

Figure 6.45 – View Native Query disabled

When you perform some changes on the data, when you add columns and enrich
the content of your queries, you will probably lose the query folding feature. The best
practice is to perform the steps when query folding is active at the beginning in order
to send a single statement to the data source, and this will end up improving the overall
performance, both in Import and Direct Query mode.

Leveraging incremental refresh and folding
When you load data from Power Query, you do not perform a one-time load, but usually,
you need to refresh data in order to load new data or to update existing data. When
loading data incrementally, it is possible to leverage parameters and query folding in
order to optimize and retrieve data quickly. In this recipe, we will see how to set up time
parameters and incremental refresh.

Leveraging incremental refresh and folding 213

Getting ready
In this recipe, you need to connect to an Azure SQL database that you can recreate in your
environment with the Adventureworks.bacpac file.

How to do it…
Once you open your Power BI Desktop application, you are ready to perform the
following steps:

1.	 Click on Get data and click on More… to access the Get Data window and to see
the complete list of connectors.

Figure 6.46 – Power BI connectors

214 Optimizing Power Query Performance

2.	 Browse to the Azure SQL database connector, select it, and click on Connect.

Figure 6.47 – Azure SQL database connector

Leveraging incremental refresh and folding 215

3.	 Enter your server and database information, flag Import for Data Connectivity
mode, and then click on OK.

Figure 6.48 – SQL Server database information

4.	 Authenticate with your preferred authentication method. In this example, I'm using
the Microsoft account authentication:

Figure 6.49 – SQL Server database authentication

216 Optimizing Power Query Performance

5.	 Select the FactInternetSales table from the database and click on
Transform Data.

Figure 6.50 – Selecting tables from a database

Leveraging incremental refresh and folding 217

6.	 Browse to the Home tab and click on the Manage Parameters button.

Figure 6.51 – Manage Parameters button

7.	 Create a RangeStart parameter with Date/Time for Type and Any value for
Suggested Values and enter 29/12/2010 00:00:00 for Current Value, as
shown in the following screenshot:

Figure 6.52 – Creating the RangeStart parameter

218 Optimizing Power Query Performance

8.	 Create a second parameter, RangeEnd, with the same settings as the previous one,
and then enter 05/01/2011 00:00:00 for Current Value and click on OK.

Figure 6.53 – Creating the RangeEnd parameter

Leveraging incremental refresh and folding 219

9.	 Select the FactInternetSales query and select the OrderDate column. Click
on the filter icon, then Date/Time Filters, and then Custom Filter….

Figure 6.54 – Applying Custom Filter...

220 Optimizing Power Query Performance

10.	 The Filter Rows window will pop up. Enter the two parameters as filter options, as
shown in the following screenshot, and click on OK to apply the custom filters:

Figure 6.55 – Filter Rows window
In this way, we are defining a subset of data between a range defined by the
parameters. The values of those parameters are not important at this time, because
this acts just as a sample subset of data that will be managed by the incremental
refresh rule that will be set later.

11.	 Click on Close & Apply to load all the queries within the model.

Figure 6.56 – Close & Apply

Leveraging incremental refresh and folding 221

12.	 Go to the Fields section, right-click on the FactInternetSales table, and click
on Incremental refresh.

Figure 6.57 – Setting up incremental refresh

222 Optimizing Power Query Performance

13.	 After having loaded the model with a sample subset of data defined by the two
parameters, you can now set up a rule that will be used when you refresh the data
from the Power BI service. You can select the table on which to apply the incremental
refresh, enable the feature, and define which rows to store based on a historical
period. In this case, we will store all data from the last 15 years. Then, you can
define which time range to consider when refreshing data. In this case, we defined
a 2-month refresh range, which means that RangeStart and RangeEnd, the two
date parameters defined previously, will adapt to this rule and that subset of data
will be updated and added. Once you set this up, leave unflagged the optional
settings (Detect data changes, which allows you to update data that has changed,
and Only refresh complete months), as shown in the following screenshot, and click
on Apply all:

Figure 6.58 – Incremental refresh details

Disabling query load 223

Once you publish the model on the Power BI service, you will be able to trigger the refresh
from there and update data quickly. Query folding is key to achieve this functionality
because when you send the refresh query to the source, you will be applying a filter that
will be included in the statement sent to the source.

Disabling query load
Queries' loads can be heavy and sometimes refreshing some tables can impact negatively
on performance. This is why it is important to know what data is concretely needed
for end users. It is common that you will need some queries just for transformations
in Power Query, but you won't need them in the final model. In this recipe, we will see
how you can use some queries for enriching data needed for reporting and how you can
disable the loading of this supporting table in order to reduce the impact on performance
and refreshing.

Getting ready
For this recipe, you need to download the following files:

•	 The FactInternetSales CSV file

•	 The DimTerritory CSV file

In this example, we will refer to the C:\Data folder.

224 Optimizing Power Query Performance

How to do it…
Once you open your Power BI Desktop application, you are ready to perform the
following steps:

1.	 Click on Get data and select the Text/CSV connector.

Figure 6.59 – Text/CSV connector

2.	 Browse to your local folder where you downloaded the FactInternetSales.csv
file and open it. The following window with a preview of the data will pop up. Click on
Transform Data.

Disabling query load 225

Figure 6.60 – CSV data preview

3.	 Repeat the previous two steps and load the DimTerritory.csv file.
4.	 Select DimTerritory in the Queries pane, browse to the Home tab, and click on the

Merge Queries button.

Figure 6.61 – Merge Queries button

226 Optimizing Power Query Performance

5.	 The Merge window will pop up. Select FactInternetSales as the table to
merge with DimTerritory and select the SalesTerritoryKey column from
both tables. Select Left Outer (all from first, matching from second) and click on
OK.

Figure 6.62 – Merge window

Disabling query load 227

6.	 Click on the expand button on the right side of the FactInternetSales
column. Flag Aggregate, select Sum of TotalProductCost and Sum of
SalesAmount, and remove the flag from Use original column name as prefix, as
shown in the following screenshot:

Figure 6.63 – Expanding columns

228 Optimizing Power Query Performance

7.	 You should see the two newly added columns in the DimTerritory query.

Figure 6.64 – Newly added columns

8.	 Rename the DimTerritory query to Sales geography since it will be the
table that we will load in the data model.

Figure 6.65 – Renaming queries

9.	 Right-click on FactInternetSales in the Queries pane and observe how, if you
load the queries with the current setting, you will load both of the queries because
they have Enable load flagged.

Disabling query load 229

Figure 6.66 – Enable load button

10.	 If you click on Enable load, you will remove the flag and you will see that the name
of the query will turn into italics, which means that if you load the queries with
these settings, you will only be loading the Sales geography query and not
FactInternetSales, which in this case was used only to enrich the other query.

Figure 6.67 – Enable load button disabled

230 Optimizing Power Query Performance

While using Power Query and performing data transformation steps, many queries will
be used to enrich others and there is no concrete need to load them all. This will leave
you with poor performance and high loading and refresh times and will increase the
complexity of the data model.

By disabling the loading of some queries, you won't lose the transformations applied, such
as the merge in this recipe, but you won't need to load a high-volume table.

7
Leveraging the M

Language
Power Query is based on M language, which stands for Power Query Formula
Language. Every time you perform a Power Query step, you are essentially writing
M code. You can leverage the UI to transform your data without learning any M language
at all but gaining an understanding of it could help you to customize even more Power
Query transformations and perform quick corrections that are not possible with
the UI only.

In this chapter, we will give an outline of M coding, explaining its differences from Data
Analysis Expression (DAX) language (a familiar language to Power BI users), and you
will see how to use M code on existing queries and how to create queries from scratch.

You will explore M coding examples through the following recipes:

•	 Using M syntax and the Advanced Editor

•	 Using M and DAX – differences

•	 Using M on existing queries

•	 Writing queries with M

•	 Creating tables in M

•	 Leveraging M – tips and tricks

232 Leveraging the M Language

Technical requirements
For this chapter, you will be using the following:

•	 Power BI Desktop: https://www.microsoft.com/en-us/download/
details.aspx?id=58494

•	 Minimum requirements for installation:

a) .NET Framework 4.6 (Gateway release August 2019 and earlier)

b) .NET Framework 4.7.2 (Gateway release September 2019 and later)

c) �A 64-bit version of Windows 8 or a 64-bit version of Windows Server 2012 R2
with current TLS 1.2 and cipher suites

d) 4 GB disk space for performance monitoring logs
You can find the data resources referred to in this chapter at the following link:
https://github.com/PacktPublishing/Power-Query-Cookbook/tree/
main/Chapter07.

Using M syntax and the Advanced Editor
Every step you perform in Power Query will translate into a line of M code. You usually
realize what M code is after a while because you start using the features available from the
UI at the beginning. Once you get more confident with Power Query steps, you become
ready to explore the elements that lie behind them, learn how they work, and how you can
create custom transformations by coding. In this recipe, we will see how to access M code
and how steps are displayed in the Advanced Editor.

Getting ready
In this recipe, you need to download the FactInternetSales.csv file.

In this example, we will refer to the C:\Data folder.

https://www.microsoft.com/en-us/download/details.aspx?id=58494
https://www.microsoft.com/en-us/download/details.aspx?id=58494
https://github.com/PacktPublishing/Power-Query-Cookbook/tree/main/Chapter07
https://github.com/PacktPublishing/Power-Query-Cookbook/tree/main/Chapter07

Using M syntax and the Advanced Editor 233

How to do it…
Once you open your Power BI Desktop application, you are ready to perform the
following steps:

1.	 Click on Get Data and select the Text/CSV connector:

Figure 7.1 – Text/CSV connector

234 Leveraging the M Language

2.	 Browse to your local folder where you downloaded the FactInternetSales.
csv file and open it. The following window, with a preview of the data, will pop up.
Click on Transform Data:

Figure 7.2 – CSV data preview

3.	 You will see the query displayed in the Power Query UI, and on the right, you will
see some automatically generated steps, especially Changed Type. This detects data
types, as you can see in the following screenshot:

Using M syntax and the Advanced Editor 235

Figure 7.3 – Queries and Applied Steps

4.	 Imagine you want to modify the Changed Type step and apply a different data
type to a column. In order to do this, you need to browse to the Home tab and click
on Advanced Editor, as shown in the following screenshot:

Figure 7.4 – Advanced Editor button

5.	 The Advanced Editor window will pop up, and this will be the entry point in order
to access the underlying M code. For each applied step listed in the UI, you can see
that there is a line of code:

Figure 7.5 – Advanced Editor window

236 Leveraging the M Language

6.	 Each step can be identified with its name (Source, Promoted Headers, and
Changed Type) and is separated from the previous one with a comma (,), as
highlighted in the following screenshot:

Figure 7.6 – Steps in the Advanced Editor

7.	 You can also change how to display your M code by clicking on the top right on
Display Options and flag whether you want to Display line numbers, Render
whitespace, Display mini map, and Enable word wrap. In this case, the second
and last options were already flagged by default and in addition to this, we also
flagged the first one to see the displayed code ordered in numbered lines:

Figure 7.7 – Flagged Display line numbers

8.	 Now have a look at how the different steps are displayed. Every step contains a
reference to the previous one. On line 3, you have the Promoted Headers step,
and the first variable of the function is a reference to the previous step, Source:

Figure 7.8 – Advanced Editor M code

Using M syntax and the Advanced Editor 237

9.	 Let's change the data type for the ProductKey column by selecting Int64.Type:

Figure 7.9 – Advanced Editor change type

10.	 Now replace Int64.Type with type text and click on Done:

Figure 7.10 – Advanced Editor change type to text

You can see how the ProductKey column changed type, but no additional step was
added because we edited the only step that was there in the APPLIED STEPS list:

Figure 7.11 – ProductKey column with updated type

For this recipe, we connected to a CSV file, but imagine you need to connect to a database
with the same data and perform the same transformations, but you do not want to create
a query from scratch and perform all the steps again. In this case, you can leverage the
Advanced Editor and change the source through the M code, following the Authentication
to data sources recipe you will find in Chapter 1, Getting Started with Power Query.

238 Leveraging the M Language

Using M and DAX – differences
Generally, when you are presented with Power BI as a business intelligence tool and
start exploring Power Query in it, you will use two code languages that have similar
functionalities – DAX and M code – and you will probably get confused by these
similarities. In this recipe, we will discuss the main differences between these two languages
and when it is better to use one instead of the other. To illustrate the main differences
between them, we will create an additional column with both M code and DAX.

Getting ready
In this recipe, you need to download the FactInternetSales.csv file.

In this example, we will refer to the C:\Data folder.

How to do it…
Once you open your Power BI Desktop application, you are ready to perform the
following steps:

1.	 Click on Get Data and select the Text/CSV connector.
2.	 Browse to your local folder where you downloaded the FactInternetSales.

csv file and open it. The following window with a preview of the data will pop up.
Click on Transform Data.

3.	 Browse to the Add Column tab and click on Custom Column:

Figure 7.12 – Add custom column

4.	 Create a custom column named Gross Margin (intended here as the subtraction
of TotalProductCost from SalesAmount) and enter the following formula:

= [SalesAmount]-[TotalProductCost]

You can see in the following screenshot how the subtraction is executed. Now click
on OK:

Using M and DAX – differences 239

Figure 7.13 – Custom column definition

5.	 Change the data type of this newly created column to Decimal Number:

Figure 7.14 – Change data type to Decimal Number

240 Leveraging the M Language

6.	 You can see a newly created column as in the following screenshot:

Figure 7.15 – Gross Margin calculated column

7.	 Open the Advanced Editor and observe the newly added line of code with the
previous transformations:

Figure 7.16 – Advanced Editor steps

8.	 Browse to the Home tab and click on Close & Apply to load the data and access the
Power BI interface:

Figure 7.17 – Close & Apply button

Using M and DAX – differences 241

Keep in mind that at this phase we have not imported or loaded anything in the data
model yet. This custom column was created, its step was mapped in the Power Query
code, and it was created as an output that comes from two inputs (SalesAmount and
TotalProductCost) from the same table.

Let's see how we can create the same Gross Margin column with DAX by performing
the following steps:

1.	 Browse to the Modeling tab and click on New column:

Figure 7.18 – Power BI view
The DAX bar will appear. Enter the following expression in the DAX bar to create
a calculated column named Gross Margin 2:

Gross Margin 2 = FactInternetSales[SalesAmount]-FactInter
netSales[TotalProductCost]

2.	 Click on the Data tab on the left section of the Power Query UI, the second one
displayed in the following screenshot:

Figure 7.19 – Data tab

242 Leveraging the M Language

Browse to the last two columns, Gross Margin and Gross Margin 2, and check
that you can see the same values:

Figure 7.20 – Gross Margin 2 as DAX calculated column

Gross Margin was calculated in the Power Query interface and Gross Margin 2
with DAX language inside Power BI. So, what is the difference between them if they are
displaying the same values? The differences can be summed up as follows:

•	 Power Query: The first column was created in Power Query as a query-time
transformation aimed to shape the data while extracting it from the data source.
The steps are mapped, and it is considered a programming language with M
IntelliSense, a code-completion aid that helps users with formula completion
suggestions. You can perform steps through UI features and perform data
preparation intuitively.

•	 DAX: The second column was created in Power BI after data was loaded as an
in-memory transformation to analyze data after having extracted it. With DAX,
which stands for Data Analysis Expression, it is possible to create formulas that
also refer to other tables within the same data model. There is no trace of the steps
performed (as in Power Query) because it is meant to be used to quickly address
business challenges on top of an in-memory engine. It is a formula language,
not a programming language.

Using M on existing queries 243

Using M on existing queries
In the previous recipes, you saw how to change and edit steps by simply opening the
Advanced Editor and modifying data types without adding additional steps or changing
data sources, without the need of performing steps from scratch. In this recipe, we will see
additional possibilities of how to use M code on existing queries and with few steps.

Getting ready
In this recipe, you need to connect to the Azure SQL Database that you can recreate in
your environment with the Adventureworks.bacpac file.

How to do it…
Once you open your Power BI Desktop application, you are ready to perform the
following steps:

1.	 Click on Get Data and click on More…:

Figure 7.21 – Power BI connectors

244 Leveraging the M Language

2.	 Browse to the Azure SQL database connector, select it, and click on Connect:

Figure 7.22 – Azure SQL database connector

3.	 Enter your server and database information, flag Import as Data Connectivity
mode, and then click on OK:

Figure 7.23 – SQL Server database information

Using M on existing queries 245

4.	 Authenticate with your preferred authentication method. In this example, we're
using the Microsoft account authentication:

Figure 7.24 – SQL Server database authentication

5.	 Select the FactInternetSales table from the database and click on
Transform Data:

Figure 7.25 – Select tables from database

246 Leveraging the M Language

6.	 Click on Choose Columns and flag the following columns: ProductKey,
SalesTerritoryKey, TotalProductKey, SalesAmount, and OrderDate and
click on OK:

Figure 7.26 – Choose Columns window

Using M on existing queries 247

7.	 You can see that for each step, you can see its M code in the formula bar above the
data in the UI:

Figure 7.27 – Formula bar expression

8.	 Let's say that you want to add another column you have missed in the previous step.
You could do that in the UI, but also directly with code. Click with your cursor after
"Order Date" and add a comma (,), and observe how a window will pop up
explaining how to interpret the M formula:

Figure 7.28 – IntelliSense example

9.	 After the comma, add the value "DueDate", press Enter on your keyboard and see
how the column DueDate appears in the query:

Figure 7.29 – DueDate column added

248 Leveraging the M Language

10.	 Now we want to reorder columns. We could drag and drop columns with our
mouse, use the Advanced Editor only, or use a combination of both. Select the
DueDate column and drag it before OrderDate:

Figure 7.30 – Drag DueDate column

11.	 You will again see how a step was created in the formula bar. You can now edit this
step to define your own order. In this case, we will define the following order:

= Table.ReorderColumns(#"Removed Other
Columns",{"SalesTerritoryKey", "ProductKey",
"SalesAmount","TotalProductCost", "DueDate",
"OrderDate"})

Using M on existing queries 249

Let's now create a flag column that will define whether to apply a discount to
a transaction or not. The values of this new column will be Apply discount
or Don't apply discount and one or the other value will refer to each row
depending on the value obtained by subtracting TotalProductCost from
SalesAmount. If the net sales are higher than 1000, then it will be possible to
apply the discount and if not, it won't be applied. Click on Custom Column and
create a new column, naming it Discount status:

Figure 7.31 – Custom Column Discount status
Enter the following code and then click on OK to create the new custom column:

if ([SalesAmount]-[TotalProductCost]) > 1000 then "Apply
discount" else "Don't apply discount"

250 Leveraging the M Language

12.	 You can see the whole line of code on the formula bar and the new column added:

Figure 7.32 – Discount status column added

You can see how you can edit and enrich your existing data by leveraging the M code in
Power Query. Editing existing queries and interacting with the Advanced Editor will help
you to get confident with how this language works.

Writing queries with M
Once you become more confident with modifying existing steps that were created using
the UI, you can further explore M language by creating elements such as values, lists, or
tables without connecting to data sources, but directly coding from the Advanced Editor.
In this recipe, we will see how M language works when writing queries from scratch. You
will perform numerical operations, define variables, and create lists and simple tables.

Getting ready
In this recipe, you need to download the FactInternetSales.csv file.

In this example, we will refer to the C:\Data folder.

Writing queries with M 251

How to do it…
Once you open your Power BI Desktop application, you are ready to perform the
following steps:

1.	 Click on Get Data and select the Blank query connector:

Figure 7.33 – Text/CSV connector

252 Leveraging the M Language

2.	 The Power Query UI will pop up and you will see an empty query with its default
name as Query1:

Figure 7.34 – Blank query

3.	 Browse to the Home tab and click on Advanced Editor.
4.	 You will see the code of the blank query and from here we can start experimenting

with the potential of M code:

Figure 7.35 – Blank query in Advanced Editor

5.	 Let's introduce a subset of the code that will define the final output of the query that
is established by the in expression. You can define several steps, and each step has
a variable name to which an expression is assigned. Let's see an example of defining
two numeric variables and an output that is their sum. Write the following
example code:

let

 a= 1,

 b=2,

 sum= a+b

in

 sum

Writing queries with M 253

Click on Done and check the following screenshot:

Figure 7.36 – Custom M expression

6.	 Observe the output in the Power Query UI to see the output value displayed at the
center and the three steps in the APPLIED STEPS list explicated as in any other
Power Query example seen earlier:

Figure 7.37 – Custom steps in the UI

254 Leveraging the M Language

7.	 If you click on the other steps, a or b, you will see their values displayed at the
center, as in the following screenshot:

Figure 7.38 – Explore steps

What if you want to perform this sum with some values coming from other tables?
Have a look at the following steps to see how to do that:

1.	 Click on New Source and select Text/CSV:

Figure 7.39 – Text/CSV connector

Writing queries with M 255

2.	 Browse to your local folder where you downloaded the FactInternetSales.
csv file and open it. Click on Choose Columns, flag SalesAmount, and
click on OK:

Figure 7.40 – Choose Columns window

256 Leveraging the M Language

3.	 Browse to the Transform tab, click on Statistics and then Sum, as shown in the
following screenshot:

Figure 7.41 – Sum column values

4.	 A sum of all values in the column will be performed. Rename
FactInternetSales to SalesAmount:

Figure 7.42 – SalesAmount value

5.	 Repeat all the previous steps (from 1 to 4), flagging TotalProductCost at Step 2 and
renaming the query to TotalProductSales:

Figure 7.43 – TotalProductCost value

Writing queries with M 257

6.	 Now open the Advanced Editor of Query1 and write the following:

let

 Discount= 0.2,

 NetSales= SalesAmount - TotalProductSales,

 NetSales_discounted= NetSales - NetSales * Discount

in

 NetSales_discounted

With these few lines, we will retrieve values calculated in other queries
(SalesAmount and TotalProductSales) and use them to calculate
a NetSales expression. We will then apply an operation to calculate a discounted
value that in this case is a fixed value (0.2). Once you apply these steps,
click on Done:

Figure 7.44 – Advanced Editor custom query

7.	 Rename the Query1 expression to NetSales_discounted and observe the
calculated value:

Figure 7.45 – NetSales_discounted final output

258 Leveraging the M Language

You can write both static and dynamic logic with M code as in the preceding examples.
You calculated two values and then you retrieved those in a custom query.

You can also create lists with few lines of code. Follow these steps to see how to do it:

1.	 Click on New Source and then on Blank Query:

Figure 7.46 – Blank Query connector

2.	 Open the Advanced Editor, write the following code and click on Done:

let

 List= {1,2,3}

in

 List

Creating tables in M 259

3.	 You can see how a list was created with the values defined in the previous step:

Figure 7.47 – List in Power Query UI
You can convert this list into a table or keep it as a list and use it as a parameter
(please refer to the Filtering with parameters recipe in Chapter 6, Optimizing Power
Query Performance). You can define a series of values and custom logic by exploring
all of M's possibilities.

You have seen how you can write free code without depending necessarily on a data source
and how you can derive values, integrating both calculations coming from data sources
and custom logic defined natively in Power Query.

Creating tables in M
Thanks to M language, you can create complex tables from scratch without necessarily
defining them inside an external data source and then importing them in Power Query.
One common example is the definition of a list of dates that can then be customized.

Getting ready
In this recipe, you only need to have Power BI Desktop running on your PC.

260 Leveraging the M Language

How to do it…
Once you open your Power BI Desktop application, you are ready to perform the
following steps:

1.	 Click on Get Data and select the Blank query connector.
2.	 The Power Query UI will pop up and you will see an empty query with its default

name as Query1:

Figure 7.48 – Blank query

3.	 Browse to the Home tab and click on Advanced Editor.

We want to create a list of dates that starts at 01/01/2011 and ends on the current
date. In order to define this logic, we have to use the List.Dates expression and
its syntax is as follows:

List.Dates(start as date, count as number, step as
duration) as list

This expression consists of the following parts:

a) start: starting date.

b) count: values that refer to the number of dates to be retrieved.

c) step: type of increment (for example, daily, monthly, and so on).

Given our requirements, we have to obtain the following:

a) start: #date(2011,01,01).

b) �count: Duration.Days (DateTime.Date(DateTime.LocalNow())
- #date(2011,01,01)), where we performed a subtraction to calculate
the number of days between the current date (DateTime.Date(DateTime.
LocalNow())) and the date defined as our start date.

c) �step: #duration(1,0,0,0), where we defined one day as the value to
increment the list of dates by.

Creating tables in M 261

In this way, we will get a list of dates that will look like the following:

01/01/2011

02/01/2011

…

Current date

The code to be inserted in the Advanced Editor will look like the following example.
Insert this, and then click on Done:

let

datelist = List.Dates(#date(2011,01,01),Duration.Days
(DateTime.Date(DateTime.LocalNow()) - #date(2011,01,01)
), #duration(1,0,0,0))

in

 datelist

4.	 You can see how a list of dates has been created with the logic defined in the
previous steps:

Figure 7.49 – Date list in the Power Query UI

262 Leveraging the M Language

5.	 Browse to the Transform section under List Tools and click on To Table:

Figure 7.50 – To Table button

6.	 The To Table window will appear, and you will find that None as Select or enter
delimiter and Show as errors as How to handle extra columns are selected by
default. Leave it as it is and click on OK:

Figure 7.51 – To Table window

Creating tables in M 263

7.	 You will see that the list is converted to a table, and you will be able to customize your
date table. First, change the column type to Date and rename the column to Date:

Figure 7.52 – Changed type and renamed to Date

8.	 Now you can browse to the Add Column tab, click on Date, and select which
columns to add referencing to the Date column. You can add Year, Month, or
Quarter and build your Date table:

Figure 7.53 – Converting list into a table

264 Leveraging the M Language

Every time that you refresh your data, you will have an updated Date table that can
be used for further purposes. This is an example of how you can leverage some Date
expressions in M language, applying intuitive logic and getting the most out of this tool.

Leveraging M – tips and tricks
Using M code and editing existing queries from the Advanced Editor implies paying
attention to some general rules in order to avoid common errors. In this recipe, we will
discover some tips and tricks to keep in mind when editing queries and using M code
on them.

Getting ready
In this recipe, you need to download the FactInternetSales.csv file.

In this example, we will refer to the C:\Data folder.

How to do it…
Once you open your Power BI Desktop application, you are ready to perform the
following steps:

1.	 Click on Get Data and select the Text/CSV connector.
2.	 Browse to your local folder where you downloaded the FactInternetSales.

csv file and open it. The following window, with a preview of the data, will pop up.
Click on Transform Data.

3.	 Rename the ProductKey column to ProductKeyCode:

Figure 7.54 – Rename column

Leveraging M – tips and tricks 265

4.	 Click on Choose Columns and flag ProductKeyCode, OrderQuantity,
SalesAmount, and OrderDate:

Figure 7.55 – Choose columns

266 Leveraging the M Language

5.	 Now open the Advanced Editor and, at line 5, edit the renamed value, and instead
of ProductKeyCode write ProductKey_Code:

Figure 7.56 – Edit column name in Advanced Editor
After renaming the column, click on Done. You can see that No syntax errors
were detected and everything seems to be OK.

6.	 You won't see any data, but you will incur an error that looks like the one in the
following screenshot:

Figure 7.57 – Error displayed
This error refers to the fact that the Choose Columns step expects a column called
ProductKeyCode, but at Step 6 we renamed it ProductKey_Code without
changing it in the step that followed.

7.	 Once again, open the Advanced Editor. In line 6, rename the ProductKeyCode
column to ProductKey_Code and click on Done:

Figure 7.58 – Update column name in the Removed Other Columns step

Leveraging M – tips and tricks 267

8.	 You will now see that the data is displayed correctly:

Figure 7.59 – Corrected query output

This example suggests that you have to pay attention when you edit existing steps and be
aware of the potential for errors when you modify the names in the steps that follow. Also,
pay attention to separate the different steps with a comma (,).

8
Adding Value to

Your Data
You have the chance to connect to your data and create and transform it as you want
thanks to a wide range of options explored in the previous chapters. Moreover, Power
Query offers the chance to add data and enrich it with additional columns or define some
functions to retrieve data. By adding columns, you can define your own customized logic
in a few steps and leverage the UI or M code expressions, which represents the language
behind the scenes of Power Query. M code expressions can be used to build functions and
define input values and programmatically retrieve a defined output in order to simplify
the entire transformation process.

In this chapter, you will explore how you can add data as new columns based on a pattern
or a logic of existing data enriching it with valuable information and using a set of
transformations.

In this chapter, we will cover the following recipes:

•	 Adding columns from examples

•	 Adding conditional columns

•	 Adding custom columns

•	 Invoking custom functions

•	 Clustering values

270 Adding Value to Your Data

Technical requirements
For this chapter, you will be using the following:

•	 Power BI Desktop: https://www.microsoft.com/en-us/download/
details.aspx?id=58494

The minimum requirements for installation are as follows:

•	 .NET Framework 4.6 (Gateway release August 2019 and earlier)

•	 .NET Framework 4.7.2 (Gateway release September 2019 and later)

•	 A 64-bit version of Windows 8 or a 64-bit version of Windows Server 2012 R2 with
current TLS 1.2 and cipher suites

•	 4 GB disk space for performance monitoring logs

You can find the data resources referred to in this chapter at https://github.com/
PacktPublishing/Power-Query-Cookbook/tree/main/Chapter08.

Adding columns from examples
We often need to add new columns based on the structure or values of an already existing
column or set of columns. Imagine you want to extract information from an existing
column quickly or to concatenate some values by typing an example and then apply an
underlying rule to all the values of that column. These scenarios can be easily achieved by
building new content by adding columns from examples. In this recipe, we will see how to
best leverage this feature.

Getting ready
For this recipe, you need to download the FactInternetSales CSV file.

In this example, we will refer to the C:\Data folder.

How to do it…
Once you open your Power BI Desktop application, you are ready to perform the
following steps:

1.	 Click on Get data and select the Text/CSV connector.
2.	 Browse to your local folder where you downloaded the FactInternetSales

CSV file and open it. The following window with a preview of the data will pop up;
click on Transform Data:

https://www.microsoft.com/en-us/download/details.aspx?id=58494
https://www.microsoft.com/en-us/download/details.aspx?id=58494
https://github.com/PacktPublishing/Power-Query-Cookbook/tree/main/Chapter08
https://github.com/PacktPublishing/Power-Query-Cookbook/tree/main/Chapter08

Adding columns from examples 271

Figure 8.1 – CSV data preview

3.	 Select the OrderDate column, browse to the Add Column tab, and click on
Column From Examples and then From Selection, as shown in the following
screenshot:

Figure 8.2 – Adding a column from examples

272 Adding Value to Your Data

4.	 The usual Power Query interface will change and you will enter Add Column From
Examples mode, where you will have the previously selected column flagged, while
on the right side, you will have an empty column, Column1, ready to be created.

Figure 8.3 – Add Column From Examples section

5.	 Double-click on the first empty cell under Column1 and you will see a dropdown
appearing with some suggestions with values that can be extracted from the
selected column.

Figure 8.4 – Example columns suggestion

Adding columns from examples 273

6.	 In this case, we want to extract the month expressed in letters and the year
expressed in numbers in order to convert the value 29/12/2010 00:00:00 into
December-2010. Type into the first cell the value you want to obtain, as in the
following example, and press Enter on your keyboard:

Figure 8.5 – Writing first column input

7.	 Then, go to row 15 and type January-2011, as in the following screenshot:

Figure 8.6 – Writing second column input

274 Adding Value to Your Data

8.	 Press the Enter key or click on another row and observe how the other rows are
filled in following the two examples you have written.

Figure 8.7 – Input autofill

9.	 Rename the column that has the temporary name Custom (because you have been
creating a custom column) and call it OrderDate-MthYear.

Figure 8.8 – Column name

Adding columns from examples 275

10.	 Observe the preview of the M code at the top of the section and the functions that
were applied. At the end, click on OK.

Figure 8.9 – M code generated by the column creation

11.	 You can see the new column now and the newly added step in the APPLIED STEPS
section, Added Custom Column.

Figure 8.10 – Newly created column step

This feature allows you to quickly create new columns by just entering the example you
have in mind or a few inputs to see what the suggestion of the tool will be.

276 Adding Value to Your Data

Imagine you want to concatenate values from multiple columns and enrich your query
with more data. You can easily achieve this with the same functionality by following the
next example:

1.	 Select the SalesOrderNumber and SalesOrderLineNumber columns, browse
to the Add Column tab, and click on Column From Examples and then From
Selection, as shown in the following screenshot:

Figure 8.11 – Columns selection

2.	 Double-click on the first cell under Column1 and select SO43697 and you will get
the first part of the new value.

Figure 8.12 – New column from examples

Adding columns from examples 277

3.	 You can see the temporary values of this new column.

Figure 8.13 – Entering the first input

4.	 Now, click again on the first cell and let's add the second part of the value.
Enter -SOLN1 to perform a concatenation between the following values -
SalesOrderNumber, added in the previous step, then a separator (-), then the
initials of SalesOrderLineNumber (SOLN), and at the end, the value of it (1), as
shown in the following screenshot:

Figure 8.14 – Second input within the same cell

278 Adding Value to Your Data

5.	 See how the concatenation was performed by having a look at the M code applied,
and then click on OK.

Figure 8.15 – M code generated by the step

6.	 At the end, rename the column SalesOrderFullCode.

Figure 8.16 – Column renaming

Adding columns from examples offers different options when you do not want to code
directly with M or when you know exactly what the desired output is but you are not sure
which transformation options in Power Query to use.

Adding conditional columns
You can also enrich your queries by adding columns with if…then logic and applying
some conditions based on existing columns. These are called conditional columns and
this feature allows you to implement conditional expressions with an intuitive interface.
In this recipe, you will see how it is easy to apply custom flags based on the values of
existing columns.

Getting ready
For this recipe, you need to download the FactInternetSales CSV file.

In this example, we will refer to the C:\Data folder.

Adding conditional columns 279

How to do it…
Once you open your Power BI Desktop application, you are ready to perform the
following steps:

1.	 Click on Get data and select the Text/CSV connector.
2.	 Browse to your local folder where you downloaded the FactInternetSales

CSV file and open it. The following window with a preview of the data will pop up;
click on Transform Data:

Figure 8.17 – CSV data preview

3.	 Browse to the Add Column tab and click on Conditional Column.

Figure 8.18 – Conditional Column button

280 Adding Value to Your Data

4.	 The Add Conditional Column window will pop up, as in the following screenshot:

Figure 8.19 – Add Conditional Column window

5.	 Name the new column PriceLevel and start creating the first condition by
selecting UnitPrice from the first dropdown after If.

Figure 8.20 – Defining the condition

Adding conditional columns 281

6.	 Then select is greater than from the Operator dropdown and enter 3000 for Value
and High for Output, as in the following example, in order to label unit prices
higher than 3000 with the High flag:

Figure 8.21 – Defining Value and Output

7.	 Then, click on Add Clause in order to add another two conditions and fill them in,
as in the following screenshot. At the end, click on OK.

Figure 8.22 – Defining multiple conditions

282 Adding Value to Your Data

With this example, we are stating that products with UnitPrice higher than 3000 have
to be labeled as High, between 2000 and 3000 as Medium-High, and between 1000
and 2000 as Medium, and if any of these conditions are not met, the label should be Low
(defined by the input in the Else section on the bottom left in the preceding figure).

Figure 8.23 – New column created

The same PriceLevel column output could be achieved by setting up the conditions
as follows:

Figure 8.24 – Defining a different order

Adding custom columns 283

Moreover, you can use dynamic values both as input values and outputs by using column
values or parameters.

Figure 8.25 – Different value options

It is important to correctly define the order of the conditions. Applying it to our recipe
will work as follows:

1.	 All unit prices higher than 3000 will be flagged as High since these rows satisfy
that first condition.

2.	 Then, all prices higher than 2000, except ones already flagged by the first condition,
will be flagged as Medium-High.

3.	 Then, all prices higher than 1000, except ones already flagged by the first and
second conditions, will be flagged as Medium.

4.	 All other prices will be flagged as Low.

By paying attention to the order and selecting the right value, you can use conditional
columns to create and enrich your data by applying conditions to different data types and
defining custom outputs.

Adding custom columns
Once you have become more confident with Power Query M code, you can also enrich
data content by writing formulas and expressions directly thanks to the custom columns
feature. In this recipe, you will see an example of how to browse this section and create
columns with calculations that are not available in the form of built-in features in the
Power Query UI.

Getting ready
For this recipe, you need to download the FactInternetSales CSV file.

In this example, we will refer to the C:\Data folder.

284 Adding Value to Your Data

How to do it…
Once you open your Power BI Desktop application, you are ready to perform the
following steps:

1.	 Click on Get data and select the Text/CSV connector.
2.	 Browse to your local folder where you downloaded the FactInternetSales

CSV file and open it. The following window with a preview of the data will pop up;
click on Transform Data:

Figure 8.26 – CSV data preview

Adding custom columns 285

3.	 Imagine you want to calculate how many days have passed between two dates, in
this case, between the ship and order dates. You can do that easily by leveraging the
Duration.Days() M function, which can be applied in the Custom Column
section. Browse to the Add Column tab and click on the Custom Column button.

Figure 8.27 – Custom Column button

4.	 The Custom Column window will pop up and you will have the chance to create an
output column from an M expression by referencing other existing columns.

Figure 8.28 – Custom Column window

286 Adding Value to Your Data

5.	 Assign a new column name, in this case, NrShippingDays, and start typing the
Duration.Days function. You will see IntelliSense working live when presented
with function options.

Figure 8.29 – IntelliSense formula engine

6.	 Once you have typed the function and opened the first bracket, you do not have
to necessarily write down the names of the columns, but you can use the section
on the right with the columns list to directly insert the query you need rather than
writing it from scratch, as shown in the following screenshot:

Figure 8.30 – Formula definition

Adding custom columns 287

Once you have clicked on < < Insert, you will see the column appearing in the
Custom column formula section.

Figure 8.31 – Formula definition
Do not worry about the red squiggly line because it appears since the format is
temporarily not right (there are missing brackets essentially).

7.	 Complete the function by adding a minus (-) and the date to be subtracted,
OrderDate, and then close the brackets and click on OK.

Figure 8.32 – Adding existing columns
You can notice how the message in the bottom left confirms No syntax errors have
been detected.

288 Adding Value to Your Data

8.	 You can now see the new column created.

Figure 8.33 – New column added

You can also create more dynamic calculations. Imagine you want to calculate the
difference between today's date and the order date or any other date value. You would have
to replace [ShipDate] in the previous formula with the DateTime.LocalNow()
function, as shown:

Figure 8.34 – Second formula definition

Invoking custom functions 289

You can see the newly created DaysFromCurrentDate column.

Figure 8.35 – New column created

Every time you refresh your data, the number will update according to the current date.

You can see it is easy to create custom columns and the more you become confident with
M functions, the easier it will be to create more complex content. You will be able to
concatenate, perform complex calculations, and refer to parameters as you would do with
M functions in the Advanced Editor.

Invoking custom functions
Power Query offers you the ability to enrich existing tables with additional columns
in many different ways, as you have seen in previous recipes, but it also allows you
to use custom functions defined as expressions that take some variables as inputs to
return a result value. In this recipe, we will see how to create a function, define function
parameters, and invoke that function to generate an output.

Getting ready
For this recipe, you need to download the FactResellerSales CSV file.

In this example, we will refer to the C:\Data folder.

290 Adding Value to Your Data

How to do it…
Once you open your Power BI Desktop application, you are ready to perform the
following steps:

1.	 Click on Get data and select the Text/CSV connector.
2.	 Browse to your local folder where you downloaded the FactResellerSales

CSV file and open it. The following window with a preview of the data will pop up;
click on Transform Data:

Figure 8.36 – CSV data preview

Invoking custom functions 291

3.	 Now, right-click on the Queries pane space and click on New Query and then
Blank Query.

Figure 8.37 – Blank query creation

4.	 In our example, we will define a function to calculate the net sales amount when
applying different discount values (if you have SalesAmount equal to 10, you first
apply a discount of 10%, and then you subtract the total cost from that discounted
value). After having created a new blank query, browse to the Home tab and open
Advanced Editor.

Figure 8.38 – Blank query display

292 Adding Value to Your Data

5.	 A blank query contains the M code text you see in the following screenshot and
here, we can define our own function:

Figure 8.39 – Blank query in the Advanced Editor

6.	 Enter the following code to create a function:

(OldSalesAmount as number, Discount as number, TotalCosts
as number) =>

let

 NetSales = OldSalesAmount - (OldSalesAmount * Discount
) - TotalCosts

in

 NetSales

The formula is divided into the following parts:

a) �Definition of input values: OldSalesAmount, Discount, and TotalCosts.
After you define these parameters, you will add the => expression to introduce
the function and the subsequent part, which starts with let.

b) �Function definition: Function formula to calculate NetSales, which is
given by OldSalesAmount - (OldSalesAmount * Discount) –
TotalCosts.

c) Value returned: This is introduced by the in clause.

Invoking custom functions 293

Have a look at how it looks in the Advanced Editor and click on Done.

Figure 8.40 – Function definition in the Advanced Editor

7.	 See how the function appears in the Power Query UI.

Figure 8.41 – Custom function parameters

294 Adding Value to Your Data

Let's also try to manually input some values to see how it works. Enter 5 for
OldSalesAmount, 0,1 for Discount (meaning 10%), and 3 for TotalCosts, and
then click on the Invoke button.

Figure 8.42 – Enter Parameters

8.	 You will see the NetSales value when a 10% discount is applied as the output of
the invoked function.

Figure 8.43 – Invoked Function

9.	 Now, let's delete Invoked Function under the Queries section on the left side of
the UI and try to create an invoked custom function to apply this calculation to the
FactResellerSales data.

Figure 8.44 – Deleting Invoked Function

Invoking custom functions 295

10.	 Rename the function query to fxNetSales to identify it easily as the function to
calculate NetSales.

Figure 8.45 – Renaming a function

11.	 Now select the FactResellerSales query, browse to the Add Column tab, and click
on Invoke Custom Function to apply the fxNetSales function, defining as
inputs the columns from FactResellerSales.

Figure 8.46 – Invoke Custom Function button

12.	 The Invoke Custom Function window will pop up and from here, you can define
which function and what input variables to use. Name the new column NetSales
and select the fxNetSales function from the Function query dropdown.

Figure 8.47 – Invoke Custom Function window

296 Adding Value to Your Data

13.	 Select the SalesAmount column for the OldSalesAmount input, enter 0,1 for the
Discount input, and then click on the input type icon and select Column Name for
the TotalCosts input.

Figure 8.48 – Variables definition

14.	 Then select the TotalProductCost column as the input column for TotalCosts.

Figure 8.49 – Variable selection

Invoking custom functions 297

15.	 After having defined the input variables, click on OK.

Figure 8.50 – Variables defined

16.	 A new column will be added to the query as the output of the function with the
variables you have defined.

Figure 8.51 – Newly generated column

298 Adding Value to Your Data

The example you saw is just one of many that you can perform using custom functions.
The idea of this feature is to create something that can be reused with multiple queries and
allow you to simplify, accelerate, and easily maintain your data transformation steps.

Clustering values
Data often comes from original data sources in many forms and you can end up having
multiple variations of the same value where you need to have a unique value. In this
case, you need a way to group and correct these values quickly, without creating complex
rules or doing it manually. In this recipe, we will see how to leverage the clustering values
feature, which enables you to automatically group data based on similarities thanks to an
underlying algorithm.

Getting ready
For this recipe, you need to have access to the Power BI portal, for which a Power BI Pro
license is needed. You also need to have access to a workspace.

How to do it…
After you log in to the Power BI portal, perform the following steps:

1.	 Browse to your workspace, click on New, and click on Dataflow.

Figure 8.52 – Creating a dataflow

Clustering values 299

2.	 Click on Add new tables in order to connect to a data source and access the Power
Query online UI.

Figure 8.53 – Add new tables

3.	 Select the Web API connector and enter the following URL to connect to a CSV file
loaded in the Power Query Cookbook GitHub repository, https://github.com/
PacktPublishing/Power-Query-Cookbook/blob/main/Chapter08/
SalesData.csv, and then click on Next to see the data preview.

Figure 8.54 – Web API connector

https://github.com/PacktPublishing/Power-Query-Cookbook/blob/main/Chapter08/SalesData.csv
https://github.com/PacktPublishing/Power-Query-Cookbook/blob/main/Chapter08/SalesData.csv
https://github.com/PacktPublishing/Power-Query-Cookbook/blob/main/Chapter08/SalesData.csv

300 Adding Value to Your Data

4.	 You will now see a data preview with the File origin, Delimiter, and Data type
detection options automatically detected. Click on Transform data to access the
Power Query UI.

Figure 8.55 – Data preview

5.	 Now have a look at the Country column and see how countries' names are not
spelled in the same way. Imagine you want to have homogeneous names and to
correct capital letters and other spelling issues. In this case, we will use the Cluster
values feature to create these clusters. Browse to Add column and click on the
Cluster values button.

Figure 8.56 – Cluster values button

Clustering values 301

Select Country for Column and define a new column called Country_
corrected, which will contain the corrected values. Define a similarity threshold
of 0.7 (the default is 0.8), which indicates how two similar values should be to
be clustered together (for example, United States and United States of
America). Ignore case and Group by combining text parts will be flagged by
default. In this case, leave the default options flagged and also flag Show similarity
scores, and then click on OK.

Figure 8.57 – Cluster values window

302 Adding Value to Your Data

6.	 After you have clicked OK, you will see two newly added columns, one with
the clustered values, Country_corrected, and one with score similarities,
Country_Country_corrected_Similarity. You can observe how values
were grouped according to similarities identified by the algorithm.

Figure 8.58 – Clusters column

With the Cluster values feature, you have the possibility to quickly correct values within
a column by using a fuzzy matching algorithm built into Power Query online. You can
think of different scenarios to correct your data and get the most out of this feature.

9
Performance Tuning

with Power BI
Dataflows

We already had the chance to see in detail how Power Query works in its Desktop
version, where you can perform data preparation and transformations and save all of it in
a Power BI Desktop file with the .pbix extension. But what if you would like to reuse
Power Query transformations done by others but cannot retrieve the .pbix file? Or what
if you want to store them somewhere accessible to multiple users? You can do that, thanks
to the Power Query online version that is integrated with the Power BI Dataflows feature,
accessible via the Power BI Portal.

In this chapter, we will see how to create, configure, and consume dataflows by exploring
the following recipes:

•	 Using Power BI dataflows

•	 Centralizing ELT with dataflows

•	 Building dataflows with Power BI Premium capabilities

•	 Understanding dataflow best practices

304 Performance Tuning with Power BI Dataflows

Technical requirements
For this chapter, you will need the following:

•	 Power BI Desktop: https://www.microsoft.com/en-us/download/
details.aspx?id=58494

•	 A Power BI Pro license and access to the www.powerbi.com portal

•	 A Power BI Premium or Power BI Premium Per User license

The minimum requirements for installation are as follows:

•	 .NET Framework 4.6 (Gateway release August 2019 or earlier)

•	 .NET Framework 4.7.2 (Gateway release September 2019 or later)

•	 A 64-bit version of Windows 8 or a 64-bit version of Windows Server 2012 R2 with
current TLS 1.2 and cipher suites

•	 4 GB of disk space for performance monitoring logs

You can find the data resources referred to in this chapter at the following link:

https://github.com/PacktPublishing/Power-Query-Cookbook/tree/
main/Chapter09

Using Power BI dataflows
You can easily access Power Query online through Power BI dataflows, a feature you can
find in the Power BI portal once you have logged in. You can create dataflows in Power
BI workspaces and manage user permissions as you would do with reports and Power BI
datasets. In this recipe, we will see how the Power BI dataflows feature works and what the
main concepts to learn about are to get the most out of it.

Getting ready
For this recipe, you need to have access to the Power BI portal, for which a Power BI Pro
license is needed.

https://www.microsoft.com/en-us/download/details.aspx?id=58494
https://www.microsoft.com/en-us/download/details.aspx?id=58494
http://www.powerbi.com
https://github.com/PacktPublishing/Power-Query-Cookbook/tree/main/Chapter09
https://github.com/PacktPublishing/Power-Query-Cookbook/tree/main/Chapter09

Using Power BI dataflows 305

How to do it...
After you log in to the Power BI portal, perform the following steps:

1.	 Create a new workspace, a place where you can collaborate with others, share and
publish your content, and from where you can access Power Query online in the
Power BI portal. You can do that by clicking on Workspaces and then on Create
a workspace as shown in the screenshot:

Figure 9.1 – Workspace creation

306 Performance Tuning with Power BI Dataflows

2.	 The following window will pop up on the right side of your browser, where you
can enter your workspace name. In this recipe, we will call it Power Query
Cookbook and enter this name in the Workspace name section:

Figure 9.2 – Workspace creation

Using Power BI dataflows 307

3.	 Then expand the Advanced section, right above the Save button, and flag Workspace
admins under Contact list (which means that only workspace admins will receive
notifications about problems in the workspace) and choose a licensing option
available in your environment. In this case, select Pro as in the following screenshot:

Figure 9.3 – Workspace creation Advanced section

308 Performance Tuning with Power BI Dataflows

4.	 Once you create the workspace, you will see this page from where you can start
building content:

Figure 9.4 – Workspace page

Using Power BI dataflows 309

5.	 Click on New and then click on Dataflow as in the following screenshot:

Figure 9.5 – Dataflow creation

6.	 The following options will be presented to start using the dataflow features:

Figure 9.6 – Creating dataflow types

310 Performance Tuning with Power BI Dataflows

For this recipe, we will connect to an external source, and we will use the Define
new tables option by clicking on Add new tables. Other options will be explored in
the rest of the chapter.

7.	 We are now creating a new dataflow from scratch, and we need to select
a connector. A familiar section will appear from where you can select a data source
to connect with (as you would do with Get Data in Power BI Desktop).

8.	 Select the Web API connector and enter the following URL to connect to
a CSV file loaded in the Power Query Cookbook GitHub repository: https://
github.com/PacktPublishing/Power-Query-Cookbook/blob/main/
Chapter09/FactInternetSales.csv. Click on Next to see a data preview:

Figure 9.7 – Web API connector
A data preview page will appear where you can define, as you would in the desktop
version, File origin, the Delimiter type, and Data type detection. Leave the options
detected by default and click on Transform data to access the next section, the
Power Query online UI:

https://github.com/PacktPublishing/Power-Query-Cookbook/blob/main/Chapter09/FactInternetSales.csv
https://github.com/PacktPublishing/Power-Query-Cookbook/blob/main/Chapter09/FactInternetSales.csv
https://github.com/PacktPublishing/Power-Query-Cookbook/blob/main/Chapter09/FactInternetSales.csv

Using Power BI dataflows 311

Figure 9.8 – Power Query data preview
The Power Query UI will pop up and from here, you can perform transformations
and model your data as you would usually do, browsing different tabs and
monitoring the applied steps on the right side of the UI:

Figure 9.9 – Power Query online page

312 Performance Tuning with Power BI Dataflows

9.	 Rename the query and type SalesData under the Query settings section on the
right side of the UI:

Figure 9.10 – Query settings

10.	 Click on the Save & close button on the bottom-right side to create the dataflow
that contains this query:

Figure 9.11 – The Save & close button

11.	 The Save your dataflow window will pop up, where you can enter a name and short
description for the dataflow. In this case, we will call the new dataflow Sales and
then click on Save:

Using Power BI dataflows 313

Figure 9.12 – Save your dataflow

12.	 You can see in the following screenshot all the tables, called entities, within the
dataflow that you created:

Figure 9.13 – Entity view within the dataflow

13.	 You could edit the dataflow, add other tables, and apply many other advanced
features. In this case, we will close this view with the top-right button, Close:

Figure 9.14 – Close dataflow view

314 Performance Tuning with Power BI Dataflows

14.	 When closing the dataflow details view, you will go back to the workspace view and
you will see the newly created content:

Figure 9.15 – Dataflows inside the workspace

15.	 Click now on the refresh icon to effectively load the data inside the storage of your
Power BI Pro account:

Figure 9.16 – Refresh icon

You have seen how easy it is to create a dataflow. You can apply Power Query
transformations and define data preparation steps directly from the browser and organize
the content in workspaces.

Centralizing ETL with dataflows
Data preparation and transformation at an enterprise level, meaning managed centrally,
compared to a self-service approach where you can perform your own data cleaning, is
one of the most expensive and difficult tasks to manage within a company. Also called
centralized ETL, this task is traditionally associated with enterprise tools, but with Power
BI dataflows, you can extract, transform, and load data by connecting to data sources,
transforming the data applying business logic, and then modeling the data to produce
reports and do further analysis.

Centralizing ETL with dataflows 315

In this recipe, you will see how you can create multiple dataflows, and that these can be
used by multiple users in their data models to produce reports and visualize all these
pieces in the lineage view.

Getting ready
For this recipe, you need to have access to the Power BI portal, for which a Power BI Pro
license is needed. You also need to have access to a Power BI workspace.

How to do it...
After you log in to the Power BI portal, perform the following steps:

1.	 Browse to your workspace, click on New and click on Dataflow.
2.	 Then click on Add new tables to connect to a data source.
3.	 Click on the Web API connector to connect to a CSV file from the GitHub repository.
4.	 Enter the following URL to connect to a CSV file loaded in the Power

Query Cookbook GitHub repository: https://github.com/
PacktPublishing/Power-Query-Cookbook/blob/main/Chapter09/
FactInternetSales.csv. Click on Next to see a data preview.

5.	 A data preview page will appear, then click on Transform data.
6.	 Once the Power Query UI appears on the web page, rename the query to

InternetSales under the Query settings section on the right side of the UI:

Figure 9.17 – Query settings

https://github.com/PacktPublishing/Power-Query-Cookbook/blob/main/Chapter09/FactInternetSales.csv
https://github.com/PacktPublishing/Power-Query-Cookbook/blob/main/Chapter09/FactInternetSales.csv
https://github.com/PacktPublishing/Power-Query-Cookbook/blob/main/Chapter09/FactInternetSales.csv

316 Performance Tuning with Power BI Dataflows

7.	 Let's apply some common Power Query transformation tasks such as Choose
columns. Browse to the Home tab and click on the Choose columns button:

Figure 9.18 – Choose columns button

8.	 Select the ProductKey, OrderDateKey, OrderQuantity,
TotalProductCost, SalesTerritoryKey, SalesAmount, and OrderDate
columns and click on OK.

9.	 Now change the OrderData column's data type to Date:

Figure 9.19 – Change the data type

Centralizing ETL with dataflows 317

10.	 Now let's save this query and click on the Save & close button at the bottom right
of the UI:

Figure 9.20 – Save & close button

11.	 Name this dataflow Sales and then click on Save.
12.	 Click on the Close button at the top right of the UI:

Figure 9.21 – Close dataflow view

13.	 Click on the refresh icon now to load the data in the underlying storage:

Figure 9.22 – Refresh icon

318 Performance Tuning with Power BI Dataflows

Following these steps, you have created the first dataflow. Now let's again perform steps
1 to 6 and 10 to13 for the CSV files containing DimProduct and DimTerritory. The
only steps not to perform are the data transformation ones from 7 to 9.

When loading DimProduct and DimTerritory, refer to the following GitHub links
when connecting through the Web API connector:

•	 https://github.com/PacktPublishing/Power-Query-Cookbook/
blob/main/Chapter09/DimProduct.csv

•	 https://github.com/PacktPublishing/Power-Query-Cookbook/
blob/main/Chapter09/DimTerritory.csv

When repeating step 6, rename the queries to DimProduct and DimTerritory, and at
step 11, name the dataflows in the same way.

Once you have created these three dataflows, you will see them displayed within the
workspace as in the following screenshot:

Figure 9.23 – Dataflows inside the workspace

https://github.com/PacktPublishing/Power-Query-Cookbook/blob/main/Chapter09/DimProduct.csv
https://github.com/PacktPublishing/Power-Query-Cookbook/blob/main/Chapter09/DimProduct.csv
https://github.com/PacktPublishing/Power-Query-Cookbook/blob/main/Chapter09/DimTerritory.csv
https://github.com/PacktPublishing/Power-Query-Cookbook/blob/main/Chapter09/DimTerritory.csv

Centralizing ETL with dataflows 319

Let's now see how we can use these three dataflows in Power BI. Once you open the Power
BI Desktop application, perform the following steps:

1.	 Click on Get data and select the Power BI dataflows connector:

Figure 9.24 – The Power BI dataflows connector

2.	 Authenticate with your user account and click on Connect. In this way, you will be
able to access workspaces you have permission to and connect to dataflows:

Figure 9.25 – Power BI dataflows authentication

320 Performance Tuning with Power BI Dataflows

3.	 The Navigator window will pop up, where you can see what dataflows you can
connect to. Select the workspace where you have created the three dataflows Sales,
DimProduct, and DimTerritory. In this case, select Power Query Cookbook
and then expand the three dataflows' names and flag DimProduct, DimTerritory,
and InternetSales. On the right side, you can see a preview of the data, as in the
following screenshot:

Figure 9.26 – Dataflow navigator

Centralizing ETL with dataflows 321

You can load and transform data as you normally do with any other data source.
You can apply additional Power Query transformations from Power BI Desktop
and then load data into your model. In this case, we will directly load the queries in
the model.

4.	 After you have clicked Load, go to the Model view by clicking on the third icon tab
on the left side of the UI:

Figure 9.27 – Model view icon

322 Performance Tuning with Power BI Dataflows

Check the relationships between the DimProduct and DimTerritory tables and
InternetSales. You should see the relationships that have already been detected
as shown in Figure 9.28 If not, hover your cursor on top of the ProductKey
column in DimProduct and drag it to the same column in InternetSales and
create a relationship. Repeat the same with DimTerritory to obtain something
like in the following screenshot:

Figure 9.28 – Model view

Centralizing ETL with dataflows 323

5.	 Now go back to the Report view and create a visual as you like (in this recipe, we
are focusing on the end-to-end flow; we will not focus on developing a report). In
this case, we will quickly create a table like the following one:

Figure 9.29 – Visual creation

324 Performance Tuning with Power BI Dataflows

6.	 Now let's publish the report and its dataset to a workspace you have access to (in
this case, we are using the same workspace where we developed the dataflows,
Power Query Cookbook). Save the .pbix file somewhere on your PC, browse
to the Home tab and apply the Sensitivity (preview) label General, then click on
the Publish button as in the following screenshot:

Figure 9.30 – Sensitivity labels

7.	 Select the workspace you want to publish to the report and its dataset, then click
on Select:

Figure 9.31 – Publish to the workspace

You have now connected to your dataflows. You have created a Power BI dataset and a
report on top of that dataset.

Centralizing ETL with dataflows 325

Now, again, open your browser and open the workspace where you have published these
elements and follow the next steps:

1.	 Observe the elements displayed in the workspace:

Figure 9.32 – Workspace view

2.	 Click on View and then on Lineage to see the preceding elements displayed in the
lineage view:

Figure 9.33 – Lineage view button

326 Performance Tuning with Power BI Dataflows

3.	 See how the different artifacts (data sources, dataflows, the dataset, and the report)
are displayed in a way that makes it easy for the user to understand how data moves:

Figure 9.34 – Lineage view

In general, instead of having datasets directly connected to the data sources, you can
create an intermediate layer with the dataflows to which multiple users can connect to
create their own data models and reports. In this way, you can create centralized ETL
pipelines with a familiar low-code tool, Power Query, making them reusable and available
to your organization. You do not need to necessarily connect to the original source data
and then create multiple datasets but can use standardized dataflows, integrate them with
external data, and create reports and dashboards on top of them.

Building dataflows with Power BI Premium
capabilities
The Power BI service has different licensing options and the Premium one allows you
to access some advanced capabilities with the dataflows feature. You can use computed
entities and linked entities, which means you can link a new dataflow to an existing one
without modifying the previous one. In this recipe, we will see these features in addition
to the previous recipe, Centralizing ETL with dataflows.

Getting ready
For this recipe, you need to have access to Power BI Portal, for which you need a Power BI
Pro license. You also need to have access to a Power BI workspace with Premium capacity.
In this recipe, a Premium Per User license will be used.

Building dataflows with Power BI Premium capabilities 327

Check this link to see the different licensing options:

https://docs.microsoft.com/en-us/power-bi/admin/service-admin-
licensing-organization#license-types-and-capabilities

How to do it...
For this recipe, you need to replicate the steps from the previous recipe to create the three
dataflows in the workspace.

You should start this recipe by having a similar situation to this one:

Figure 9.35 – Workspace view

Let's now follow the next steps to explore the Premium feature:

1.	 First, we need to assign a premium capacity to this workspace by clicking on Settings:

Figure 9.36 – Settings icon

https://docs.microsoft.com/en-us/power-bi/admin/service-admin-licensing-organization#license-types-and-capabilities
https://docs.microsoft.com/en-us/power-bi/admin/service-admin-licensing-organization#license-types-and-capabilities

328 Performance Tuning with Power BI Dataflows

2.	 The Settings window will appear on the right side of the screen. Click on the
Premium tab and select a premium capacity option. In this case, Premium per user
should be selected, and then click on Save:

Figure 9.37 – Workspace Settings window

Building dataflows with Power BI Premium capabilities 329

3.	 Check that the Premium Per User content is enabled by the presence of a diamond
icon:

Figure 9.38 – Power BI Premium workspace

4.	 Now click on the Sales dataflow to see the tables contained in it:

Figure 9.39 – Dataflow selection

330 Performance Tuning with Power BI Dataflows

5.	 You will see the previously loaded table, InternetSales, but now also want to
add ResellerSales. Click on Add tables to open the connectors page:

Figure 9.40 – Add tables button

6.	 After having selected the Web API connector, enter the following URL to
connect to a CSV file loaded in the Power Query Cookbook GitHub repository:
https://github.com/PacktPublishing/Power-Query-Cookbook/
blob/main/Chapter09/FactResellerSales.csv. Click on Next to see a
data preview.

7.	 You will the data preview and click on Transform data to access the Power Query
online page.

8.	 Rename the query to ResellerSales under Query Settings.
9.	 Click on the Choose columns button from the Home tab:

Figure 9.41 – Choose columns button

10.	 Select the ProductKey, OrderDateKey, OrderQuantity,
TotalProductCost, SalesTerritoryKey, SalesAmount, and OrderDate
columns and click on OK.

11.	 Then change the OrderDate column type by clicking on Using locale… since the
date in this file is expressed in European format:

https://github.com/PacktPublishing/Power-Query-Cookbook/blob/main/Chapter09/FactResellerSales.csv
https://github.com/PacktPublishing/Power-Query-Cookbook/blob/main/Chapter09/FactResellerSales.csv

Building dataflows with Power BI Premium capabilities 331

Figure 9.42 – Change the data type

12.	 Select Date for Data type and English (United Kingdom) for Locale and click on
OK to correctly convert the Date column:

Figure 9.43 – Change the column type with locale

332 Performance Tuning with Power BI Dataflows

13.	 Now we want to append InternetSales and ResellerSales queries in
one, but first, let's create a Flag column for each query to make the transactions
identifiable as the Internet or Reseller channel. Select ResellerSales from
the right side of the page, browse to the Add column tab, and select Custom column:

Figure 9.44 – Add a custom column

14.	 Create a column called Channel, write "Reseller", and click on OK to create
this column with the value Reseller as a flag:

Figure 9.45 – Custom column creation

Building dataflows with Power BI Premium capabilities 333

15.	 Repeat the previous two steps with InternetSales and write Internet instead
of Reseller.

16.	 Now browse to the Home tab and click on Combine, on Append queries, and then
on Append queries as new to append these two tables in to one:

Figure 9.46 – Append queries as new

17.	 The Append window will appear and from here, you can select InternetSales and
ResellerSales as the two tables to be appended:

Figure 9.47 – Append window

334 Performance Tuning with Power BI Dataflows

18.	 The following message will appear and confirm that you are okay to have the data
revealed by clicking on Continue:

Figure 9.48 – Revealing data notification

19.	 You will see that a new query will be generated, called Append as a result of
the transformation step. The lightning bolt on the table icon means that this is a
computed entity:

Figure 9.49 – Computed entity icon

20.	 Rename the table to TotalSales under Query Settings.
21.	 Click on Save & close to save the transformations performed.

You have created a computed entity, which is an in-storage computation. The first two
queries, InternetSales and ResellerSales, have been loaded in the underlying
storage and when you perform additional transformations combining queries or
referencing them, you are creating computed entities, in this case, TotalSales.

Building dataflows with Power BI Premium capabilities 335

Now let's explore another concept through an example, linked entities. Imagine you want
to combine some data in two tables that belong to different dataflows. You can do that by
leveraging linked entities by following these steps:

1.	 From the workspace view, click on New and then on Dataflow:

Figure 9.50 – Dataflow creation

336 Performance Tuning with Power BI Dataflows

2.	 Then click on Add linked tables to create a linked entity:

Figure 9.51 – Add linked tables

3.	 The Power BI dataflows connector page will pop up and you will be required to
authenticate your account. Click on Sign in, complete the steps, and then click on
the Next button, which will be activated after the authentication:

Figure 9.52 – Power BI dataflows connector

4.	 You will now see a preview of workspaces and dataflows you have access to. Expand
the DimTerritory and Sales dataflows and select, respectively, the DimTerritory
and TotalSales tables as in the following screenshot:

Building dataflows with Power BI Premium capabilities 337

Figure 9.53 – Power Query data preview

5.	 You will see, under Queries on the left side of the page, the two tables, identified
as linked entities by the chain icon. These tables are read-only, and you cannot
perform any transformation directly on these tables:

Figure 9.54 – Linked tables icon

6.	 Since they are read-only tables, we will create a transformation and combine them
in a third table. Select the DimTerritory query, browse to the Home tab, click on
Merge queries, and then on Merge queries as new as in the following example:

Figure 9.55 – Merge queries as new

338 Performance Tuning with Power BI Dataflows

7.	 Select DimTerritory for Left table for merge, TotalSales for Right table for merge,
and the SalesTerritoryKey column for both queries. Then select Left outer under
Join kind and click on OK:

Figure 9.56 – Merge window

Building dataflows with Power BI Premium capabilities 339

8.	 A new query called Merge will be created and you can observe how the newly
created table is a computed entity:

Figure 9.57 – Computed table icon

9.	 The new table contains DimTerritory columns and a column to expand with values
coming from TotalSales. Click on the expand icon of the TotalSales column, flag
TotalProductCost and SalesAmount, and then click on OK:

Figure 9.58 – Expand column

340 Performance Tuning with Power BI Dataflows

10.	 You have two new additional columns with sales data by geography:

Figure 9.59 – Power Query page

11.	 Rename the query Merge to SalesGeo.
12.	 Click on Save & close.
13.	 Name the dataflow Sales Geography and click on Save.
14.	 Click on Close to go back to the workspace view:

Figure 9.60 – Close dataflow view

15.	 Now click on View and then on Lineage to access the lineage view:

Figure 9.61 – Lineage button

Understanding dataflow best practices 341

16.	 You can see, in the lineage view, how the different dataflows depend on each other
and from where data is coming:

Figure 9.62 – Lineage view

Linked entities and computed entities are very useful when it comes to minimizing data
replication and maximizing data consistency. You can create dataflow derivatives without
reconnecting to the data sources, just by referring to existing dataflows.

Understanding dataflow best practices
When you create dataflows and use computed and linked entities, there are some
suggestions on how to best optimize the creation, the configuration, and the use of
dataflows in the Power BI environment. In this recipe, we will see some common best
practices to take into consideration when modeling data with this powerful tool:

•	 Organizing your dataflows

•	 Structuring a data refresh

•	 Understanding the Common Data Model and Azure Data Lake Storage integration

342 Performance Tuning with Power BI Dataflows

Getting ready
For this recipe, you need to refer to the outputs of the previous two recipes and follow the
reasoning presented.

It will be easier to follow the recipe's structure after having already created some dataflows.

How to do it...
Power BI dataflows is a powerful tool for centralized data preparation with a low-code
approach and to know how to best leverage it, it is important to follow some suggestions
for tasks that have always been associated with IT departments, such as extract-transform-
load and staging tables.

Organizing your dataflows
The first thing to point out is that you should not have everything in one dataflow and you
should not have all dataflows within one workspace.

Since dataflows are meant to be reused by multiple users for different workloads, it could
become unmanageable to have all tables in one or a few dataflows. It is important to
generally create two types of dataflows:

•	 Staging dataflows: You can create these dataflows to make the first load of data
coming from original data sources (databases and source systems) and create
the first layer of data that does not have any type of transformation, like in the
following example:

Understanding dataflow best practices 343

Figure 9.63 – Lineage view for staging dataflows
In this case, you have raw data inside this workspace to which you can grant
permissions to users to access and create their transformations.

•	 Transformation dataflows: This is the second layer of data that references not the
original data sources, but the first layer, the staging dataflows.

Users have permissions to create linked tables and compute entities and build their
dataflows, all pointing to one single source of truth, the staging ones. If you check
the recipes in this chapter, you will see how you can combine tables coming from
different dataflows and obtain something more complex like the following example
within the same workspace as we saw in the previous recipe.

344 Performance Tuning with Power BI Dataflows

You can combine tables coming from different dataflows and obtain something more
complex from other workspaces as in the following example:

Figure 9.64 – Linked entities in separate workspaces

In this case, we are referencing two dataflows coming from the Power Query Cookbook
workspace and a Sales by Product table was created in the Power Query Cookbook
2 workspace by executing a computed entity.

You can create and manage multiple layers of dataflows and you can distribute them across
different workspaces according to company departments and different project use cases.

If you see that a table is used frequently across many datasets, then you may find it useful
to create a centralized dataflow and make it available to all users who need that table. Step
by step, you can manage to create a complex and efficient extract-transform-load data
architecture where you can control, thanks to the lineage view, where your data is most
used with a low-code and business-friendly approach.

Structuring a data refresh
Another key topic regarding dataflows is refreshing data. Linking to the previous section,
you may define a dataflow distribution across dataflows also according to refresh frequencies.

Tables with different refresh frequencies should stay in separate dataflows and, when
possible, you should implement an incremental refresh.

Understanding dataflow best practices 345

You can set up an incremental refresh when you click on a dataflow from the workspace
view. Then, under the ACTIONS section, you can click on the Incremental refresh icon –
the last one of the four icons displayed, as shown in red in the following screenshot:

Figure 9.65 – Incremental refresh icon

Once you click on the icon, a section on the right side of the page will pop up where you
can enable the incremental refresh. Choose the DateTime column from your table and
define the data storage options:

Figure 9.66 – Incremental refresh settings

346 Performance Tuning with Power BI Dataflows

You can check out Leveraging on incremental refresh and folding recipe in Chapter 6,
Optimizing Power Query Performance, to see how to apply this feature to your data and
how storage and data refresh logic works.

Let's now concentrate on the relationship between dataflows and datasets when it comes
to refreshing.

Following the example from the Centralizing ETL with dataflows recipe, where we realized
an end-to-end flow from source to report, it is important to point out that when you
trigger the refresh for a dataflow, the dataset will not be refreshed. You must manage the
refreshing of these two elements separately, at least from the UI:

Figure 9.67 – Lineage view for dataflows, datasets, and reports

You can also use external tools such as Power Automate or a REST API to trigger the
refresh sequentially.

Understanding dataflow best practices 347

Understanding the Common Data Model and Azure Data Lake
Storage integration
If you've already had the chance to read the previous recipes in this chapter, you will have
seen that we mentioned the underlying Power BI storage where the data of dataflows
is stored. You can access data stored in this underlying storage only with the Power BI
dataflows connector and not from external tools.

This is something that happens by default if you do not define your storage resource to
store data loaded in dataflows.

Power BI dataflows offer you the possibility to store data in Azure Data Lake Storage and
access dataflow tables from external tools. You can create your data lake and link it to your
Power BI environment in two ways:

•	 At the organization level, where all dataflows created will be stored inside one data
lake. You can configure it from the Admin portal by clicking on Azure connections:

Figure 9.68 – Link an Azure data lake at an organization level

348 Performance Tuning with Power BI Dataflows

•	 At the workspace level, where dataflows within one workspace will be stored inside
the specific data lake linked to that workspace. You can set it up from the workspace
Settings and by clicking on Azure connections:

Figure 9.69 – Link an Azure data lake at the workspace level

Once you have linked your storage account, you can access this data from other tools
within the Microsoft platform and also from third-party tools.

It is important to highlight that data is stored in a defined format, called the Common
Data Model (CDM). The CDM is a shared data model, and it is a way of organizing data
from different sources into a standard structure. The CDM includes over 340 standardized
data schemas that Microsoft and its partners have published.

You can have a look at these schemas directly from the Power Query online UI. When
you have a table open in edit mode, you can browse to the Home tab and click on Map to
entity, which allows you to map your columns to a standard data structure:

Understanding dataflow best practices 349

Figure 9.70 – Map to entity button

You will open the Map to CDM entity window, where you can search entities, for
example, Product, and then you can map the columns of your query output to attributes
of a standard CDM entity. There are multiple entities, such as Account, Address, Product,
Social Activity, and many more.

Figure 9.71 – Map to CDM entity window

350 Performance Tuning with Power BI Dataflows

The CDM allows the data to be unified in a well-known form with semantic meaning, and
it simplifies the integration of data between different apps that use CDM standard entities,
enabling these applications to easily read and understand the data.

But how is data organized in Azure Data Lake Storage? It is organized in folders and data
is stored in CSV files. In the following example, you can see the backend structure of
a dataflow saved in a workspace:

Figure 9.72 – CDM format in the Azure data lake

When you connect to Azure Data Lake Storage, when you load the first dataflow, a folder
will be created underneath with the name of the workspace. Then a folder with the
dataflow name is created and inside it, there are the following elements:

•	 model.json: In this file, you can find metadata, a set of data that describes and
gives information about tables' column names, data types, mapping to standard
entities, and more.

•	 model.json.snapshots: The same logic as the file before, storing historical
metadata information from previous versions.

•	 entity name: In this case, InternetSales.

•	 Entity name folder with CSV snapshots: Historical CSV snapshots saved after each
data refresh, in this case, InternetSales.csv.snapshots.

•	 CSV file(): The file where the current dataflow entity is stored, in this
case, InternetSales.CSV.snapshots/InternetSales.csv@
snapshot=2020-10-27T14:40:43.6798252Z.

Understanding dataflow best practices 351

If you add transformation steps and refresh your data, the above elements will be
refreshed accordingly, and a snapshot of the previous version will be stored and accessible
from external tools.

It is important to understand how CDM is structured because when you create
a dataflow, you are offered other options on how to create dataflows, as shown in the
following screenshot:

Figure 9.73 – CDM options to create dataflows

The other two options that you can use to leverage Power BI dataflows are the following:

•	 Import Model: If external systems generate the CDM format in the lake, you can
attach that form here without connecting to source systems, but you can map in the
Power BI workspace something that already exists in the lake.

•	 Attach a Common Data Model folder (preview): You can attach an existing
folder to the Azure data lake and make it visible from the Power BI service as
a Power BI dataflow.

10
Implementing Query

Diagnostics
Every transformation and data preparation step that you do has an impact on your
performance when you develop Power Query transformations. You can analyze and
test your queries to observe the consequences while refreshing your data and iteratively
applying Power Query steps in Power BI Desktop.

In this chapter, we will see how to best use a built-in feature called Query Diagnostics, in
order to easily retrieve relevant data on Power Query performance. In particular, we will
go through the following recipes:

•	 Exploring diagnostics options

•	 Managing a diagnostics session

•	 Designing a report with diagnostics results

•	 Using Diagnose as a Power Query step

Technical requirements
For this chapter, you will be using the following:

•	 Power BI Desktop: https://www.microsoft.com/en-us/download/
details.aspx?id=58494

https://www.microsoft.com/en-us/download/details.aspx?id=58494
https://www.microsoft.com/en-us/download/details.aspx?id=58494

354 Implementing Query Diagnostics

The minimum requirements for installation are the following:

•	 .NET Framework 4.6 (Gateway release August 2019 and earlier)

•	 .NET Framework 4.7.2 (Gateway release September 2019 and later)

•	 A 64-bit version of Windows 8 or a 64-bit version of Windows Server 2012 R2 with
current TLS 1.2 and cipher suites

•	 4 GB disk space for performance monitoring logs

You can find the data resources referred to in this chapter at https://github.com/
PacktPublishing/Power-Query-Cookbook/tree/main/Chapter10.

Exploring diagnostics options
You can use the Query Diagnostics tool to carry out an assessment of your queries and
the steps performed. This means that once you have created Power Query steps, you can
initiate a session that records and analyzes all the steps performed before you end that
session. You can record what happens at the query level or deep dive at the single-step
level. In this recipe, we will see where to find the Query Diagnostics option and how to set
up the environment before starting a session.

Getting ready
For this recipe, you need to download the FactInternetSales CSV file.

In this example, we will refer to the C:\Data folder.

How to do it…
Once you open your Power BI Desktop application, you are ready to perform the
following steps:

1.	 Click on Get data and select the Text/CSV connector.

2.	 Browse to your local folder where you downloaded the FactInternetSales
CSV file and open it. The following window with a preview of the data will pop up.
Click on Transform Data:

https://github.com/PacktPublishing/Power-Query-Cookbook/tree/main/Chapter10
https://github.com/PacktPublishing/Power-Query-Cookbook/tree/main/Chapter10

Exploring diagnostics options 355

Figure 10.1 – Data preview

3.	 Browse to the Tools tab and you will see the different tools you can use to start
a diagnostic session.

Figure 10.2 – Tools tab
You have the chance to diagnose a single step or start a general session and trace
different actions, such as query refresh or the creation of a new step.

356 Implementing Query Diagnostics

4.	 Before using this tool, we need to check the Diagnostic Options section. Click on
the Diagnostic Options button, the last one in the Tools tab, and you will see the
Options window pop up on the Diagnostics tab.

Figure 10.3 – Diagnostics tab in Options

Exploring diagnostics options 357

5.	 Scroll down to the end and focus on the Query Diagnostics section, as shown in
the following screenshot:

Figure 10.4 – Query Diagnostics in Options detail

You can enable diagnostics at the report and Query Editor levels, but this could require
you to have admin rights. If you cannot run it, enable only Query Editor, as shown in the
preceding screenshot.

You can select a diagnostics level and select which type of output to get:

•	 Aggregated: You will easily understand diagnostics information because the
information will be grouped allowing you to take immediate action.

•	 Detailed: All diagnostics information is shown at the highest level of detail.

You will also have the chance to select an Additional Diagnostics option, such as
Performance counters (including resource consumption and information about CPU
and memory) and Data privacy partitions (logical partitions used to isolate steps for data
privacy).

From here, you can define which type of information you want to see and analyze once
you run the diagnostics session. Remember to check the information before using
this tool.

358 Implementing Query Diagnostics

Managing a diagnostics session
Once you set up the Query Diagnostics options as shown in the previous recipe, you can
run a session and see what results you get thanks to this feature. In this recipe, we will
perform some transformation steps, and then run a diagnostics session and observe the
type of results.

Getting ready
For this recipe, you need to download the FactInternetSales CSV file.

In this example, we will refer to the C:\Data folder.

How to do it…
Once you open your Power BI Desktop application, you are ready to perform the
following steps:

1.	 Click on Get data and select the Text/CSV connector.

2.	 Browse to your local folder where you downloaded the FactInternetSales
CSV file and open it. A window with a preview of the data will pop up; click on
Transform Data.

3.	 Browse to the Home tab and click on the Choose Columns button. The Choose
Columns window will pop up. Flag the ProductKey, OrderDateKey,
SalesTerritoryKey, OrderQuantity, ProductStandardCost,
TotalProductCost, SalesAmount, and OrderDate columns and
click on OK.

Managing a diagnostics session 359

Figure 10.5 – Choose Columns

360 Implementing Query Diagnostics

4.	 Change the ProductKey data type to Text.

Figure 10.6 – Changing the data type

5.	 Browse to the Tools tab and click on Start Diagnostics, as shown in the following
screenshot:

Figure 10.7 – Start Diagnostics button

6.	 You will see that the Start Diagnostics icon will be deactivated, and Stop
Diagnostics will be enabled. This means that the session is currently active, and it is
recording all the steps you are doing.

Now, browse to the Home tab and click on the Refresh Preview button to run the
diagnostics on all Power Query steps performed previously at once.

Managing a diagnostics session 361

Figure 10.8 – Refresh Preview button

7.	 After the refresh finishes, go back to the Tools tab and click on Stop Diagnostics.

Figure 10.9 – Stop Diagnostics button

8.	 Once you click the Stop Diagnostics button, the output of the session will be
generated. Under the Queries section, you will find the three query outputs
grouped in the Diagnostics folder, all created automatically by Power Query, as you
can see in the following screenshot:

Figure 10.10 – Diagnostics output

362 Implementing Query Diagnostics

9.	 If you click on the Diagnostics_Detailed query, you will see a query appear with
data regarding the diagnostic session, as follows:

Figure 10.11 – Diagnostics schema

A high volume of information has been retrieved on the refresh we performed.

You will end up with three output queries, Diagnostics_Detailed, Diagnostics_
Aggregated, and Diagnostics_Partitions, and they correspond to the output
that you defined in the Options window in the Exploring diagnostics options recipe.

These three queries always have the same schema and you can read and interpret them to
understand what has happened on the backend while Power Query was performing the
refresh.

The most relevant dimensions can be summed up as follows:

•	 Id: Unique identifier for the evaluation of a single recording session.

•	 Query: Name of the query evaluated, listed under the Queries section on the left
side of the UI.

•	 Step: Name of the applied step, listed under the Query settings pane on the right
side of the UI.

•	 Category: The operation category.

•	 Data Source Kind: The data source you are accessing. In this example, it is File.

Designing a report with diagnostics results 363

•	 Operation: The operation that is performed.

•	 Start Time: Operation start time.

•	 End Time: Operation end time.

•	 Exclusive Duration (%): Time range of the event being active, expressed as
a percentage.

•	 Exclusive Duration: The absolute time of the exclusive duration.

•	 Resource: Name of the resource you are accessing, in this case, the file path on your
local PC.

•	 Is User Query: A true/false value that refers to whether the query was authored
by the user (listed in the left-hand pane, APPLIED STEPS) or whether it was
generated by some other user action.

•	 Group ID: Grouping created to approximate steps executed during the evaluation.

In the next recipe, we will see how we can design a report using this information.

Designing a report with diagnostics results
Once you have run the query diagnostics, it is important to know how to interpret
these results. By just reading data from Power Query in a table, you can miss out on
some relevant information. The best way to avoid this is to create a report on top of it by
importing the diagnostics queries into a Power BI model and building visuals that can
make sense out of that data.

Getting ready
For this recipe, you need to download the FactInternetSales CSV file.

In this example, we will refer to the C:\Data folder.

364 Implementing Query Diagnostics

How to do it…
Once you open your Power BI Desktop application, you are ready to perform the
following steps:

1.	 Click on Get data and select the Text/CSV connector.

2.	 Browse to your local folder where you downloaded the FactInternetSales
CSV file and load it two times in order to make a comparison later in the recipe.
You should have the following view:

Figure 10.12 – Queries pane

3.	 Rename the FactInternetSales query to FactInternetSales-example1
and FactInternetSales (2) to FactInternetSales-example2.

Figure 10.13 – Queries

Designing a report with diagnostics results 365

4.	 Select FactInternetSales-example1, click on OrderDateKey, and then
click on the Remove Columns button.

Figure 10.14 – Column selection

5.	 Now select the ProductKey column and change the type to Text.

Figure 10.15 – Changing the data type

366 Implementing Query Diagnostics

6.	 Select the ShipDateKey column and click on the Remove Columns button.

Figure 10.16 – Remove Columns

7.	 Now select DueDateKey and convert the data type to Text as you did in Step 5 for
ProductKey.

Figure 10.17 – Changing the data type

Designing a report with diagnostics results 367

8.	 Now, browse to the end of the table, select the OrderDate column, and then click
on the Remove Columns button to delete it.

Figure 10.18 – Removing a column

9.	 Apply a filter to the ProductKey column by clicking on the drop-down icon, then
Text Filters, and then Begins With….

Figure 10.19 – Filtering on the ProductKey column

368 Implementing Query Diagnostics

10.	 The Filter Rows window will pop up. Enter the value 3, as shown in the following
screenshot, and click on OK:

Figure 10.20 – Filter Rows window

11.	 You should have a situation like in the following screenshot under the Query
Settings pane:

Figure 10.21 – Applied steps

Designing a report with diagnostics results 369

We performed some steps, alternating between removing columns and data type changing
steps.

This first part will help us make a comparison between two equal query outputs but with
different step prioritizations that will be analyzed with Query Diagnostics.

Let's now work on the FactInternetSales-example2 query and replicate the next
steps:

1.	 Select the FactInternetSales-example2 query and click on the Choose
Columns button, as shown in the following screenshot:

Figure 10.22 – Column selection

370 Implementing Query Diagnostics

2.	 Remove the flag from the OrderDateKey, ShipDateKey, and OrderDate
columns (the last one is at the end of the list) and click on OK.

Figure 10.23 – Choose Columns

3.	 Select the ProductKey and DueDateKey columns, as shown in the following
screenshot:

Designing a report with diagnostics results 371

Figure 10.24 – Multiple-column selection

4.	 Right-click on one of the two columns and click on Change Type and then Text to
convert the data type for both columns.

Figure 10.25 – Changing the data type for multiple columns

372 Implementing Query Diagnostics

5.	 Apply a filter to the ProductKey column by clicking on the drop-down icon and
then on Text Filters and Begins With….

6.	 The Filter Rows window will pop up. Enter the value 3 and click on OK.

You should see the following steps for the second example:

Figure 10.26 – Applied steps

As mentioned earlier, we now have two queries with the same output. Let's see how
they perform and how much time it takes to apply the steps considering their different
sequences.

Let's record a diagnostic session to see whether there are any differences between the two
approaches by following the next steps:

1.	 Browse to the Tools tab and click on Start Diagnostics.

2.	 Then, browse to the Home tab and click on Refresh Preview and then Refresh All.

3.	 Go back to the Tools tab and click on Stop Diagnostics.

4.	 You should see, under the Queries pane on the left side of the UI, a folder named
Diagnostics and four queries as diagnostics output.

Designing a report with diagnostics results 373

Figure 10.27 – Diagnostics output queries

5.	 Right-click on the query that starts with Diagnostics_Aggregated in order to
analyze the key information that we need and click on Enable load to load the data
in the final data model and build visualizations on top of it.

Figure 10.28 – Enable load for diagnostics queries

374 Implementing Query Diagnostics

6.	 Click on the Close & Apply button to load the data and pass it to the visualization
part.

Figure 10.29 – Close & Apply button

7.	 Under the Fields section in Power BI Desktop, you can see the diagnostics data.
Select Exclusive Duration and Query under Fields, and then select Stacked
column chart, as shown in the following example:

Figure 10.30 – Stacked column chart creation

Designing a report with diagnostics results 375

You can see the exclusive duration of FactInternetSales-example1 is almost
double that of FactInternetSales-example2.

8.	 Select Category for Legend to see the column chart broken down according to the
Category type that was performed.

Figure 10.31 – Bar chart enrichment

376 Implementing Query Diagnostics

You will see Exclusive Duration by Query and Category and you can spot what the
operations taking more time to be applied are.

Figure 10.32 – Bar chart with legend

9.	 You can also create a table with the data you need. You can see the following
example with a table with Query, Start Time, Step, Exclusive Duration, and
Category:

Designing a report with diagnostics results 377

Figure 10.33 – Table visual for diagnostics data

10.	 In this example, the steps were performed in few-second fractions; in order to read
them, we can add more decimal places for the values. Under the Fields section, click
on Exclusive Duration to see the background behind the value, as in the following
example:

Figure 10.34 – Formatting a column by decimal type

378 Implementing Query Diagnostics

11.	 After you have selected Exclusive Duration, the Column tools tab will pop up
on the top section of the Power BI Desktop UI. Under that tab, in the Formatting
section, enter the number of decimal places you want to see, in this case, 10, and
press Enter on your keyboard.

Figure 10.35 – Column tools and Formatting

12.	 You will see how Exclusive Duration will now be easier to analyze on the table
visual.

Figure 10.36 – Table visual

Using Diagnose as a Power Query step 379

In general, you can see which values are contributing to the increase in duration of
a query and how different factors can influence the evaluation of a certain query.

The most frequent analysis is related to what happens when the refresh from Power
Query is started and to see what the impact of different steps could be. In this case, we
can see how the overall duration is higher in FactInternetSales-example1,
where we alternate removing columns and data type changes, whereas in the second,
FactInternetSales-example2, we consolidate the steps, and it turns out to be, as
we would expect, more performant.

You can leverage Query Diagnostics to make these comparisons and get the most out of
this analysis.

There's more…
In general, as you had the chance to see with this recipe, it is better to consolidate the
same steps, such as removing columns, filtering, and changing data types, and not
alternate them like in the FactInternetSales-example1 query.

Moreover, another key element that can be analyzed is query folding. As we saw in
Chapter 6, Optimizing Power Query Performance, in the Folding queries recipe, you
can send a query directly toward your data source and with Power Query Diagnostics,
you can see what has been pushed back and review it. It is important to perform all
transformations that support folding at the beginning to optimize performance.

Using Diagnose as a Power Query step
In the previous recipes, you had the chance to see how to run a query diagnostic at the
query level, but you also have the chance to investigate single Power Query steps, without
running general diagnostics for the entire query, and then drill down to the step you are
interested in. In this recipe, we will see how to use this feature and test a single step.

Getting ready
For this recipe, you need to download the FactInternetSales CSV file.

In this example, we will refer to the C:\Data folder.

380 Implementing Query Diagnostics

How to do it…
Once you open your Power BI Desktop application, you are ready to perform the
following steps:

1.	 Click on Get data and select the Text/CSV connector.

2.	 Browse to your local folder where you downloaded the FactInternetSales
CSV file and open it. A window with a preview of the data will pop up; click on
Transform Data.

3.	 Select the ProductKey column, click on the drop-down icon, and click on
Number Filters and then Greater Than….

Figure 10.37 – Filtering on ProductKey

4.	 The Filter Rows window will appear. Enter the value 380 to keep rows where
ProductKey is greater than that value and click on OK.

Using Diagnose as a Power Query step 381

Figure 10.38 – Filter Rows window

5.	 We will now diagnose the step we performed in the previous step. Navigate to
APPLIED STEPS on the right side of the Power Query UI, right-click on the
Filtered Rows step, and click on Diagnose, as in the following screenshot:

Figure 10.39 – Diagnose step from APPLIED STEPS

382 Implementing Query Diagnostics

You can also browse to the Tools tab and click on the Diagnose Step button to
achieve the same result.

Figure 10.40 – Diagnose Step from the Tools tab

6.	 Under the Queries pane, you can see the output of Diagnose Step, similar to the
ones seen in the previous recipes, but now, we focus only on that single step.

Figure 10.41 – Diagnose Step output

The diagnostic schema is the same as the one observed when we ran diagnostic queries in
the previous sections of this chapter.

In general, Power Query offers you the possibility to evaluate the impact of different steps
while developing your transformations and when refreshing queries in Power BI Desktop.

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

384 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Learn Power BI

Greg Deckler

ISBN: 978-1-83864-448-2

•	 Explore the different features of Power BI to create interactive dashboards

•	 Use the Query Editor to import and transform data

•	 Perform simple and complex DAX calculations to enhance analysis

•	 Discover business insights and tell a story with your data using Power BI

•	 Explore data and learn to manage datasets, dataflows, and data gateways

•	 Use workspaces to collaborate with others and publish your reports

https://www.packtpub.com/free-ebook/learn-power-bi/9781838644482

Other Books You May Enjoy 385

Expert Data Modeling with Power BI

Soheil Bakhshi

ISBN: 978-1-80020-569-7

•	 Implement virtual tables and time intelligence functionalities in DAX to build
a powerful model

•	 Identify Dimension and Fact tables and implement them in Power Query Editor

•	 Deal with advanced data preparation scenarios while building Star Schema

•	 Explore best practices for data preparation and data modeling

•	 Discover different hierarchies and their common pitfalls

•	 Understand complex data models and how to decrease the level of model
complexity with different data modeling approaches

https://www.packtpub.com/product/expert-data-modeling-with-power-bi/9781800205697

386

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you've finished Power Query Cookbook, we'd love to hear your thoughts! If you
purchased the book from Amazon, please click here to go straight to the Amazon
review page for this book and share your feedback or leave a review on the site that you
purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1-800-56948-3

https://packt.link/r/1-800-56948-3

Index

A
administrators

adding 8
Advanced Editor

using 232-237
AdventureWorks data 16
artificial intelligence (AI) 143
artificial intelligence insights

exploring 143-147
authentication

to data sources 15-20
types 15

Azure Data Lake Storage
integration 347-351

Azure SQL Database 16, 173

C
centralized ETL

creating, with dataflows 314-326
cluster values 298-302
cognitive services 143
columns

managing 78
pivoting 124-129
removing 81

selecting 79, 80
splitting 132-136
unpivoting 124-129

columns from examples
adding 270-278

Common Data Model (CDM) 347-351
computed entity 334
conditional columns

about 278
adding 278-283

connector
navigating 36-38

connectors, categories
Azure 39
databases 38
file 38
online services 39
other 39
Power platform 39

connector type
changing 23-25

custom columns
adding 283-289

custom functions
about 289
invoking 289-297

388 Index

D
data

extracting 136-139
grouping 120-124
obtaining 36-38

Data Analysis Expression (DAX)
about 242
versus M 238-242

database connector
query, creating from 56-62

data gateway
managing, on Power BI portal 8-14

data profiling tools
using 82-90

data source permissions
changing 21-23, 25

data sources
authentication 15-20
managing, with Power Query 29-33

data types
formatting 108-117

data volumes
managing, with Power Query 29-33

Diagnose
using, as Power Query step 379-382

Diagram view
using 96-106

E
empty rows

filling 129-131
Extract Table Using Examples 49

F
file connectors

query, creating from 39-49
folder connector

query, creating from 49-55
function formula, parts

function definition 292
input values, defining 292
value returned 292

G
Gateway Cluster Settings 9

H
headers

rows, using as 118-120

I
incremental refresh

leveraging 212-223

J
joining methods

using 156-164
JSON or XML

parsing 139-143

L
licensing options, Power BI

reference link 327
linked entities 335

Index 389

M
M

queries, writing 250-259
tables, creating 259-264
tips and tricks 264-267
using, on existing queries 243-250
versus DAX 238-242

machine learning (ML) 147
Microsoft O365 6
M IntelliSense 242
M syntax

using 232-237
multiple files

combining 169-173

O
Oracle Data Access Components

(ODAC) 62

P
parameters

filtering with 189-203
setting up 182-188

personal mode gateway 3
Power Automate 346
Power BI

about 6
URL 8

Power BI dataflow, best practices
about 341
Azure Data Lake Storage

integration 347-351
Common Data Model 347-351
data refresh, structuring 344-346
organizing 342-344

Power BI dataflows
about 31
building, with Power BI Premium

capabilities 326-341
staging 342, 343
used, for centralizing ETL 314-326
using 304-314

Power BI gateway
download link 3
installing 3-7, 15

Power BI portal
data gateway, managing on 8-14

Power BI Premium capabilities
used, for building dataflow 326-341

Power Query
about 36, 242
solving, challenges 25

Power Query Desktop 37
Power Query Editor

exploring 72-77
Power Query online 38, 304
Power Query, solving challenges

consistent experience, providing
across platforms 33

data sources, managing 29-33
data volumes, managing 29-33
low code tool, using 26, 27

Power Query step
Diagnose, using 379-382

Q
Queries pane shortcuts

using 91, 92
query

appending 165-168
creating, from database connector 56-62
creating, from file connectors 39-49

390 Index

creating, from folder connector 49-55
creating, from web connector 62-69
merging 150-155
M, using on 243-250
writing, with M 250-259

Query Dependencies view
using 173-180

Query Diagnostics option
exploring 354-357

Query Diagnostics results
used, for designing report 363-379

Query Diagnostics session
managing 358-363

query folding
leveraging 212-223
performing 203-212

query load
disabling 223-230

Query Settings pane shortcuts
using 93-96

R
Recovery key 6
report

designing, with Query Diagnostics
results 363-379

REST API 346
rows

using, as headers 118-120

S
Schema view

using 96-105
standard/enterprise mode gateway 3

T
tables

creating, in M 259-264
retrieving, by writing SQL statements 56
selecting/viewing 56

transformation dataflows 343

W
web connector

query, creating from 62-69

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Contributors
	Table of Contents
	Preface
	Chapter 1: Getting Started with Power Query
	Technical requirements
	Installing a Power BI gateway
	Getting ready
	How to do it…
	How it works

	Authentication to data sources
	Getting ready
	How to do it…
	How it works

	Main challenges that Power Query solves
	Getting ready
	How to do it…

	Chapter 2: Connecting to
Fetch Data
	Technical requirements
	Getting data and connector navigation
	Getting ready
	How to do it...

	Creating a query from files
	Getting ready
	How to do it...
	How it works...

	Creating a query from a folder
	Getting ready
	How to do it...
	How it works...

	Creating a query from a database
	Getting ready
	How to do it...
	How it works...

	Creating a query from a website
	Getting ready
	How to do it...
	How it works...

	Chapter 3: Data Exploration in Power Query
	Technical requirements
	Exploring Power Query Editor
	Getting ready
	How to do it…

	Managing columns
	Getting ready
	How to do it…

	Using data profiling tools
	Getting ready
	How to do it…

	Using Queries pane shortcuts
	Getting ready
	How to do it…

	Using Query Settings pane shortcuts
	Getting ready
	How to do it…

	Using Schema view and Diagram view
	Getting ready
	How to do it…

	Chapter 4: Reshaping Your Data
	Technical requirements
	Formatting data types
	Getting ready
	How to do it

	Using first rows as headers
	Getting ready
	How to do it

	Grouping data
	Getting ready
	How to do it

	Unpivoting and pivoting columns
	Getting ready
	How to do it

	Filling empty rows
	Getting ready
	How to do it

	Splitting columns
	Getting ready
	How to do it

	Extracting data
	Getting ready
	How to do it

	Parsing JSON or XML
	Getting ready
	How to do it

	Exploring artificial intelligence insights
	Getting ready
	How to do it

	Chapter 5: Combining Queries for Efficiency
	Technical requirements
	Merging queries
	Getting ready
	How to do it…

	Joining methods
	Getting ready
	How to do it…

	Appending queries
	Getting ready
	How to do it…

	Combining multiple files
	Getting ready
	How to do it…

	Using the Query Dependencies view
	Getting ready
	How to do it…

	Chapter 6: Optimizing Power Query Performance
	Technical requirements
	Setting up parameters
	Getting ready
	How to do it…

	Filtering with parameters
	Getting ready
	How to do it…

	Folding queries
	Getting ready
	How to do it…

	Leveraging incremental refresh and folding
	Getting ready
	How to do it…

	Disabling query load
	Getting ready
	How to do it…

	Chapter 7: Leveraging the M Language
	Technical requirements
	Using M syntax and the Advanced Editor
	Getting ready
	How to do it…

	Using M and DAX – differences
	Getting ready
	How to do it…

	Using M on existing queries
	Getting ready
	How to do it…

	Writing queries with M
	Getting ready
	How to do it…

	Creating tables in M
	Getting ready
	How to do it…

	Leveraging M – tips and tricks
	Getting ready
	How to do it…

	Chapter 8: Adding Value to Your Data
	Technical requirements
	Adding columns from examples
	Getting ready
	How to do it…

	Adding conditional columns
	Getting ready
	How to do it…

	Adding custom columns
	Getting ready
	How to do it…

	Invoking custom functions
	Getting ready
	How to do it…

	Clustering values
	Getting ready
	How to do it…

	Chapter 9: Performance Tuning with Power BI Dataflows
	Technical requirements
	Using Power BI dataflows
	Getting ready
	How to do it...

	Centralizing ETL with dataflows
	Getting ready
	How to do it...

	Building dataflows with Power BI Premium capabilities
	Getting ready
	How to do it...

	Understanding dataflow best practices
	Getting ready
	How to do it...

	Chapter 10: Implementing Query Diagnostics
	Technical requirements
	Exploring diagnostics options
	Getting ready
	How to do it…

	Managing a diagnostics session
	Getting ready
	How to do it…

	Designing a report with diagnostics results
	Getting ready
	How to do it…
	There's more…

	Using Diagnose as a Power Query step
	Getting ready
	How to do it…

	About Packt
	Other Books You May Enjoy
	Index

